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Résumé

Dans cet exposé, nous allons examiner le problème de l’écoulement pulsatile dans les
récipients déformables à parois viscoélastiques. Par souci de simplicité, nous supposons
que le flux est axisymétrique et le fluide idéal. À savoir, dans ce travail, nous effectuons
la réduction de l’ordre de modèle sous l’hypothèse de longue vague des équations d’Euler
axi-symétriques. Nous obtenons ainsi de nouvelles équations de modèles asymptotiques
décrivant la propagation d’impulsions à crête longue dans des tubes déformables avec
symétrie cylindrique [8].

Les effets supplémentaires dus aux contraintes visqueuses dans les bio-fluides peuvent
également être pris en compte. Traditionnellement, c’est un système hyperbolique d’équ-
ations qui est utilisé. Dans notre travail, nous proposons diverses extensions faiblement
dispersives en présence de la symétrie cylindrique. Nous nous concentrons d’abord sur le
régime entièrement non linéaire conduisant à des équations de modèles relativement com-
plexes. Afin de simplifier davantage le système de type Serre obtenu, nous en dériverons sa
contrepartie faiblement non linéaire ainsi que les réductions unidirectionnelles du modèle
( e.g. KdV, équations de type BBM).

les nouveaux systèmes sont étudiés analytiquement en fonction de leurs propriétés ca-
ractéristiques de base telles que les symétries, les lois de conservation et les ondes soli-
taires [17, 4]. Certainement, les propriétés linéaires telles que les relations de dispersion
sont discutées par rapport au modèle de base.
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Summary

In this talk we are going to consider the pulsatile flow problem in deformable ves-
sels with visco-elastic walls. For the sake of simplicity, we assume the flow to be axi-
symmetrical and the fluid ideal. Namely, in this work we perform the model order reduc-
tion under the long wave assumption of axi-symmetric Euler equations. In this way we
derive new asymptotic model equations describing the propagation of long-crested pulses
in deformable pipes with cylindrical symmetry [8].

Additional effects due to viscous stresses in bio-fluids can be also taken into account. Tradi-
tionally, it is a hyperbolic system of equations which is being used. In our work we propose
various weakly dispersive extensions in the presence of the cylindrical symmetry [9]. We
focus first on the fully nonlinear regime leading to relatively complex model equations. In
order to simplify further the obtained Serre-type system, we derive its weakly-nonlinear
counterpart along with unidirectional model reductions (e.g. KdV, BBM-type equations).

The new systems are studied analytically in terms of their basic characteristic properties
such as the symmetries, conservation laws and solitary travelling waves [17, 4]. Of course,
the linear properties such as the dispersion relations are discussed with respect to the
base model.
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I – Introduction

A beating heart creates pressure and flow pulsations that propagate as waves through
the arterial tree that are reflected at transitions in arterial geometry and elasticity. Indeed,
the vascular wall is a living tissue with the presence of muscalar cells which contribute
to its mechanical behaviour. The mechanical interaction between fluid and vessel walls
makes the flow kind of a complex structure, one of the factors affecting blood flow is the
flexible nature of the vessels, the large arteries are deformed by the large blood pressure,
and they store energy during the systolic phase to return it in the diastolic phase. We are
facing a problem whose complexity is enormous. It is the role of mathematical modeling to
find reasonable simplifying assumptions by which major physical characteristics remain
present [2, 14, 16, 13, 15]. The mathematical modelling of such flows suggests the use
of incompressible and ideal and radially symmetric fluid flow equations known to as the
Euler equations.

Figure 1 – Sketch of the physical domain of a single vessel segment with elastic and
impenetrable wall

These equations written in cylindrical coordinates take the form [10]

u t + uux + v u r +
1

ρ
px = 0 , (1)

v t + u vx + v v r +
1

ρ
p r = 0 , (2)

ux + v r +
1

r
v = 0 , (3)

where u = u (x, r, t ) , v = v (x, r, t ) are the horizontal and the radial velocity of fluid
respectively, p = p (x, r, t ) is the pressure of the fluid, while ρ is the constant density
of the fluid. We denoted rw (x, t ) as the distance of vessel’s wall from the center of the
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vessel in a cross section, and it depends on x and t while the radius of the vessel at rest is
the function r 0 (x ) . A sketch of the physical domain of this problem is given by figure 1.
In general, deformation of the wall will be a function of x and t. If we denote the ra-
dial displacement of the wall by η (x, t ) then the vessel wall radius can be written as
rw (x, t ) = r 0 (x ) + η (x, t ) .
The prevailing equations (1 – 3) along with initial and boundary conditions form a closed
system. A compatibility condition is also applied at the center of the vessel. Specifically,
we assume that

v (x, r, t ) = 0, for r = 0,

The form of the impermeability condition on the vessel wall can be written as

v (x, r, t ) = η t (x, t ) +
(
r 0 + η (x, t )

)
x
u (x, r, t ), for r = rw (x, t ) ,

and expresses the fact that the fluid velocity equals the wall speed v = rw
t . The second

boundary condition is actually Newton’s second law on the vessel wall written in the form

ρw h η tt (x, t ) = pw (x, t ) − Eσ h

r 2
0 (x )

η (x, t ) ,

where ρw is the wall density, pw is the transmural pressure, h is the thickness of the vessel
wall, Eσ = E / ( 1 − σ 2 ), where E is the Young’s modulus of elasticity with σ denoting
the Poisson ratio of the elastic wall. In this study, we assume that E is a constant and
in general we will replace in the notation Eσ by E. For more information about the de-
rivation of the Euler equations and the boundary conditions we refer to [3, 19]. Because
of the complexity of the Euler’s equations, one-dimensional models have been introduce
[6, 18], and bidirectional model [1, 12].
In this paper we extend the work [7], and drive some new asymptotic equations of
Serre-Green-Naghdi type in cylindrical coordinates, and we drive a new asymptotic one-
dimensional model equations of Boussinesq type. The new systems describe inviscid and
irrotational fluid flow in elastic vessels of variable diameter and can be used as an alter-
native case.

II – Asymptotic analysis

II – 1 Non-dimensionalization and normalization

The first step to derive simple mathematical models from the Euler equations is to
introduce non-dimensional independent variables that are defined as follows

η ⋆ =
η

a
, x ⋆ =

x

λ
, r ⋆ =

r

R
, t ⋆ =

t

T
, u ⋆ =

1

ϵ c̃
u,

v ⋆ =
1

ϵ δ c̃
v, p ⋆ =

1

ϵ ρ c̃ 2
p ,

where a is a typical amplitude of the vessel wall displacement, λ is a typical wavelengths
of a pulse, R is a vessel’s typical radius, t = λ / c̃ the characteristic time scale, while
c̃ =

√
E h/ 2 ρR is the Moens-Korteweg characteristic speed [5]. It is noted that the

external pressure is considered zero and neglected. The parameters ϵ and δ characterize
the nonlinearity and the dispersion of the system

ϵ =
a

R
, δ =

R

λ
.
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Usually, ϵ and δ are very small. Specifically, we assume that ϵ ≪ 1, δ 2 ≪ 1 , while the
Stokes-Ursel number is of order 1 : ϵ / δ 2 = O ( 1 ) . Deleting the ⋆ from the notation
below, the non-dimensional form of the Euler becomes [11]

u t + ϵ u ux + ϵ v u r + px = 0 , (4)

δ 2 ( v t + ϵ u vx + ϵ v v r ) + p r = 0 for 0 ⩽ r ⩽ rw = r 0 + ϵ η , (5)

r ux + ( r v ) r = 0 , (6)

δ 2 vx = u r , (7)

while the boundary conditions are written as

v (x , rw, t ) = η t (x, t ) + rw
x u (x, rw, t ) , (8)

pw (x, t ) = p (x, rw, t ) = α δ 2 η tt (x, t ) + β (x ) η (x, t ) + δ 2β γ η t , (9)

v (x, 0, t ) = 0 , (10)

where

α̃ =
ρw h

ρ
and β̃(x ) =

E h

ρ r 2
0 (x )

.

Then

α =
α̃

R
and β (x ) =

2R 2 ρ

E h
β̃ (x ) and γ =

γ̃

δ 2 T
,

where ρw is the wall density, h is the thickness of the vessel wall, E is the young modulus

of elasticity, R is a vessel’s typical radius, T =
λ

c
is the characteristic time scale. Equation

(7) represents the irrationality of the flow and its is equivalent with the assumption that
the flow is potential.

II – 2 Model derivation

It is appropriate to study either the depth averaged velocity or the velocity of the fluid
at a certain height above the bottom. In both cases, speed values are expected to be close,
because It has been observed that the horizontal velocity of the fluid is usually uniform
across the fluid depth. Here, we will obtain approximation models to the Euler equations
by using the mean velocity with respect the depth [7], given by

ū =
1

r 0 + ϵ η

∫ rw

0

u (x, r, t ) d r . (11)

Integration the equation of conservation mass (6), with the kinematic boundary conditions
(8), we obtain ∫ rw

0

r ux d r + rwη t (x, t ) + rw rw
x u (x, rw, t ) = 0 . (12)

Similarly, integrating the momentum equation (4), we have∫ rw

0

u t d r + ϵ

∫ rw

0

uux d r + ϵ

∫ rw

0

v u r d r = −
∫ rw

0

px d r . (13)
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For the derivation of model equations, crucial role plays the assumptions on the pressure
field. Using Leibniz rule 1 and the dynamic boundary condition (9) :∫ rw

0

px d r =
∂

∂ x

∫ rw

0

p d r − p (x, rw, t ) rw
x =[

rw p̄
]
x
−

(
α δ 2 η tt + η β + δ 2 β γ η t

)
rw
x . (14)

To compute p̄ we write the r momentum (5) as

p r = − δ 2 Γ (x, r, t ) , (15)

with Γ (x, r, t ) := v t + ϵ u vx + ϵ v v r .

Integrating the equation (15) from r to rw, with the dynamic boundary conditions (9),
we obtain

⇒ rw p̄ =
(
α δ 2 η tt + β η + δ 2 β γ η t

)
rw + δ 2

∫ rw

0

∫ rw

r

Γ (x, z, t ) d z d r .

Further, we have∫ rw

0

px d r =
(
α δ 2 η tt + β η + δ 2 β γ η t

)
x
rw + δ 2 ∂

∂ x

∫ rw

0

∫ rw

r

Γ (x, z, t ) d z d r.

(16)
Substituting the equation (16) into (13), we obtain∫ rw

0

u t d r + ϵ

∫ rw

0

uux d r +
(
α δ 2 η tt + β η + δ 2 β γ η t

)
x
rw

+ δ 2 ∂

∂ x

∫ rw

0

∫ rw

r

Γ (x, z, t ) d z d r = − ϵ

∫ rw

0

v u r d r . (17)

Now we compute the Taylor polynomial of u around the bottom 0 . Denoting by u 0 the
horizontal velocity at the cylindrical axis r = 0, we get

u (x, r, t ) = u 0 (x, t ) − 1

4
δ 2r 2 ∂ 2 u 0

∂ x 2
+ O ( δ 4 ) , (18)

v (x, r, t ) = − r

2

∂ u 0

∂ x
+ O ( δ 2 ) . (19)

The integration of (18) yields

u 0 = ū +
1

12
δ2 ( rw) 2

∂ 2ū

∂x 2
+ O ( δ 4 ), (20)

and therefore, (18) becomes

u (x, r, t ) = ū +
1

12
δ 2 ( rw ) 2

∂ 2ū

∂x 2
− 1

4
δ 2 r 2 ∂ 2 ū

∂ x 2
+ O ( δ 4 ) . (21)

1.
∂

∂ x

( ∫ b ( t )

a ( t )

f (x, t ) dx

)
=

∫ b ( t )

a ( t )

f t (x, t ) dx + f ( b( t ), t ) . b ′ ( t ) − f ( a ( t ), t ) . a ′ ( t ) .
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Moreover, the vertical velocity is given by

v (x, r, t ) = − r

2

∂ ū

∂ x
+ O ( δ 2 ) . (22)

Using equation (21) to evaluate the following integrals∫ rw

0

uux d r = rw ū ūx +
1

6
δ 2 rw

x ( rw ) 2 ū ūxx + O ( δ 4 ) , (23)

∫ rw

0

u t d r = rw ū t +
1

6
δ 2 rw

t ( rw ) 2 ūxx , (24)∫ rw

0

v u r d r = δ 2

∫ rw

0

r 2

4
ūx ūxx d r =

1

12
δ 2 ūx ūxx ( r

w ) 3 + O ( δ 4 ) . (25)

Substituting equation (22) into Γ ( x, r, t ), allows us to rewrite Γ (x, r, t )

Γ (x, r, t ) = − r

2

[
ūxt + ϵ ū ūxx − ϵ

2
( ūx )

2
]
+ O ( δ 2, ϵ δ 2 ) . (26)

Combining (26), (25), (24), (23) and (17) and taking ūxt + ϵ ū ūxx − ϵ ( ūx )
2 is inde-

pendent of r, we have

rw ū t +
δ 2

6
rw
t ( rw ) 2 ūxx + ϵ rw ū ūx +

ϵ δ 2

6
rw
x ( rw ) 2 ū ūxx +

(
α δ 2 η tt + β η+

δ 2 β γ η t

)
x
rw +

ϵ δ 2

12
( rw ) 3 ūx ūxx − δ 2

6

∂

∂ x

[
( rw ) 3 ( ūxt + ϵ ū ūxx

− ϵ

2
( ūx )

2
]
= O ( δ 4 ) . (27)

If we return to the equation (12), and substitute (21) in the first term, and assuming
δ ≪ 1 and ϵ = O ( 1 ), we get

( rw ) 2

2
ūx +

δ 2

12
rw
x ( rw ) 3 ūxx − δ 2

48
( rw ) 4 ūxxx + rw η t + rw rw

x uw (x, t ) = O ( δ 4 ) ,

(28)

rw ū t +
δ 2

6
rw
t ( rw ) 2 ūxx + ϵ rw ū ūx +

ϵ δ 2

6
rw
x ( rw ) 2 ū ūxx +

(
α δ 2 η tt + β η

+ δ 2 β γ η t

)
x
rw +

ϵ δ 2

12
( rw ) 3 ūx ūxx − δ 2

6

∂

∂x

[
( rw ) 3 ( ūxt + ϵ ū ūxx − ϵ

2
( ūx )

2

]
= O ( δ 4 ) . (29)

The integration of equation (7) from r to rw and subsequent solution with respect u yields

u (x, r, t ) = u (x, rw, t ) − δ 2

∫ rw

r

vx (x, s, t ) d s . (30)

We continue with the derivation of analogues asymptotic approximations for the radial
velocity v. We consider the function [10]

Q (x, r, t ) =
1

r

∫ r

0

s u (x, s, t ) d s . (31)
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Using (30), we obtain

Q (x, r, t ) =
1

r

∫ r

0

s uw (x, t ) d s + O ( δ 2 ) =
r

2
uw (x, t ) + O ( δ 2 ) . (32)

The integration of the equation (6) by parts yields

v (x, r, t ) = − 1

r

∫ rw

0

s ux d s = −Qx (x, r, t ) , (33)

which simplifies to

v (x, r, t ) = − r

2
uw

x (x, t ) + O ( δ 2 ), (34)

if we combine (34) with (30), which leads to the high-order approximation of the horizontal
velocity, we obtain

uw (x, t ) = u (x, r, t ) − δ 2 uw
xx (x, t )

( rw) 2 − r 2

4
+ O ( δ 4 ). (35)

Using the definition of uw, we consequently have

uw (x, t ) = u − δ 2 uxx (x, r, t )
(rw ) 2 − r 2

4
+ O ( δ 4 ) , (36)

with u (x, r, t ) = ū (x, t ) + 1
12

δ 2 ( rw ) 2 ūxx (x, t ) − 1
4
δ 2 r 2 ūxx (x, t ) + O ( δ 4 ) .

A short calculation yields

uw (x, t ) = ū − 1

6
δ 2 ( rw ) 2 ūxx + O ( δ 4 ) . (37)

Using the above computations and returning to the main system (28) – (29), we obtain
the PDEs

( rw ) 2

2
ūx − δ 2

12
rw
x ( rw ) 3 ūxx − δ 2

48
( rw ) 4 ūxxx + rw η t + rw rw

x ū = O ( δ 4 ) , (38)

rw ū t +
δ 2

6
rw
t ( rw ) 2 ūxx + ϵ rw ū ūx +

ϵ δ 2

6
rw
x ( rw ) 2 ū ūxx +

(
α δ 2 η tt + β η

+ δ 2 β γ η t

)
x
rw +

ϵ δ 2

12
( rw ) 3 ūx ūxx − δ 2

6

∂

∂x

[
( rw ) 3 ( ūxt + ϵ ū ūxx −

ϵ

2
( ūx )

2 )
]

= O ( δ 4 ) . (39)

Here, as before, rw ≡ r 0 (x ) + ϵ η (x, t ) with r 0 = const. Finally we arrive at the
following PDE system with variable coefficients

r 0

2
ū x + ϵ

η

2
ū x − ϵ δ 2

12
ηx ( r 0 + η ) 2 ūxx − δ 2

48
( r 0 + ϵ η ) 3 ūxxx+ η t + ϵ ηx ū = O ( δ 4 ),

(40)
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ūx + ϵ ūūx +
ϵ δ 2

6
η t ( r 0 + ϵ η ) ū xx +

ϵ 2 δ 2

6
ηx ( r 0 + ϵ η ) ū ūxx +

(
α δ 2 ηxx + β η+

δ 2β γ η t

)
x

+
ϵ δ 2

16
( r 0 + ϵ η ) 2 ūxūxx − δ 2

6 (r 0 + ϵ η)

∂

∂x

[
( r 0 + ϵ η ) 3 ( ūxt + ϵ ū ūxx −

ϵ

2
( ūx )

2 )

]
= O ( δ 4 ). (41)

III – Model reduction

III – 1 The classical cylindrical Boussinesq system

Considering long waves of small amplitude, i.e., when δ ≪ 1 and ϵ ≪ 1 the system
could be simplified further. For example, keeping the terms of O (ϵ, δ 2 ) , with r 0 =
const , we obtain a constant-coefficient Boussinesq-type nonlinear system in dimensional
variables for general constant radius r 0 > 0 :

r 0

2
ūx +

η

2
ūx + η t −

r 3
0

48
ūxxx + ηx ū = 0 , (42)

ū t + ū ūx + α̃ ηxtt + β̃ η x + β̃ γ̃ η xt −
r 2
0

6
ūxxt = 0. (43)

III – 2 A unidirection model : Viscous KdV-and BBM-type equations

In order to drive such models we consider the following dimensionless variables :

η⋆ =
η

a
, x ⋆ =

x

λ
, r ⋆ =

r

r 0

, t⋆ =
t

T
, u⋆ =

u

c 0
, (44)

where here c 0 =
a

r 0

√
2E h

ρ r 0

is a modified Moens-Korteweg characteristic speed and

T = 2
a λ

r 0 c 0

. The system (42) – (43) in dimensionless variables then is written as

η ⋆
t⋆ + u ⋆

x⋆ + ε η ⋆ u ⋆
x ⋆ + 2 ε η ⋆

x⋆ u ⋆ − δ 2

24
u ⋆

x⋆⋆⋆ = 0 , (45)

u ⋆
t⋆ + η ⋆

x⋆ + 2 ε u ⋆ u ⋆
x ⋆ +

1

2
δ 2 α η ⋆

x⋆t⋆t⋆ + γ ⋆ δ 2 η ⋆
x⋆ t⋆ − 1

6
δ 2 u ⋆

x⋆x⋆t⋆ = 0, (46)

where γ ⋆ =
1

2

σ

ε δ 2
γ, σ =

c 0

λ
, and ε =

a

r 0

, δ =
r 0

λ
. From (45), we observe that η ⋆

t⋆ =

−u ⋆
x⋆ + O ( ε, δ 2 ), and thus η ⋆

x⋆t⋆t⋆ = −u ⋆
x⋆x⋆t⋆ + O ( ε, δ 2 ) and η ⋆

x⋆t⋆ = −u ⋆
x⋆x⋆ +

O ( ε, δ 2 ) . Considering a flow mainly towards in the direction of x, we can use the low-
order approximation for unidirectional wave propagation [17]

ū ⋆ = η ⋆ + εA + δ 2B + O ( ε 2, δ 4, ε δ 2 ) ,
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where A and B are two unknown function of x ⋆ and t ⋆ . Hence in dimensional variables
the viscous KdV equation takes the form

η t + c̃ η x +
5

2

c̃

r 0

η η x +
c̃ ( 12 α̃ + 3 r 0 ) r 0

48
η xxx − r 0

4
β̃ γ̃ η xx = 0. (47)

In dimensional variables the viscous BBM equation takes the form

η t + c̃ η x +
5

2

c̃

r 0

η η x − ( 12 α̃ + 3 r 0 ) r 0

48
η xxt −

r 0

4
γ̃ β̃ η xx = 0, (48)

c̃ =

√
E h

2 ρ r 0

.

In the absence of any form of dissipation, and after taking the inviscid limit γ̃ → 0,
suppose η (x, t ) = η (x − c s t ) = η ( ζ ), it is known that the viscous KdV equation
possesses classical solitary waves propagating with speed c s, given by the formula

η (x, t ) =
48 ( c s − c̃ ) r 0

40 c̃
sech 2

(√
12 ( c s − c̃ )

c̃ ( 12 α̃ + 3 r 0 ) r 0

(x − c s t )

)
.

For the viscous BBM equation (48), classical solitary waves propagating with speed c s
can be computed explicitly and have the form

η (x, t ) =
48 ( c s − c̃ ) r 0

40 c̃
sech 2

(√
12 ( c s − c̃ )

c s ( 12 α̃ + 3 r 0 ) r 0

(x − c s t )

)
.

The dispersion relation ω = ω ( k ) of the viscous KdV equation (47) can be easily com-
puted

ω = c̃ k − r 0 c̃ ( 12 α̃ + 3 r 0 ) k
3

48
− i

4
r 0 γ β̃ k 2 .

Similarly, the dispersion relation of the viscous derived BBM equation (48) is given by

ω =
48 c̃ k

48 + r 0 ( 12 α̃ + 3 r 0 ) k 2
− i

12 γ r 0β̃ k 2

48 + r 0 ( 12 α̃ + 3 r 0 ) k 2
.

III – 3 Conservation laws and symmetries

In the general case, when the unperturbed radius of the vessel is variable, that is,
r 0 = r 0 (x ) and rw = r 0 (x ) + η (x, t ) , the system (38), (39) can be written in
dimensional variables as

( rw ) 2

2
ūx − 1

12
rw
x ( rw ) 3 ūxx − 1

48
( rw ) 4 ūxxx + rw η t (x, t ) + rw rw

x ū = 0 , (49)

rw ū t +
1

6
rw
t ( rw ) 2 ūxx + rw ū ūx +

1

6
rw
x ( rw ) 2 ū ūxx +

(
α̃ η tt (x, t ) + β̃ η (x, t )

+ β̃ γ η t

)
x
rw +

1

12
( rw ) 3 ūx ūxx − 1

6

∂

∂x

[
( rw ) 3

(
ūxt + ū ūxx −

1

2
( ūx )

2
)]

= 0 .

(50)
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The PDE system (49) – (50) admits only one conservation law correspond to the set of mul-
tipliers : λ 1 ( t, x, η, ū, η x, ūx, η xx, ūxx, η xxx, ūxxx ) = 1, λ 2 ( t, x, η, ū, η x, ūx, η xx,
ūxx, η xxx, ūxxx ) = 0, which is given by[

η r 0 +
1

2
η 2

]
t

+

[
− 1

48
η 4 ūxx − 1

12
η 3 r 0 ūxx − 1

8
η 2 r 2

0 ūxx +
1

2
η 2 ū − 1

48
r 4
0 ūxx

+ r 0 η ū +
1

2
r 2
0 ū − 1

12
η r 3

0 ūxx

]
x

= 0 .

Let us compute also the symmetry group of the equations (38) – (39), we find 7 cases to
study.

• Case 1 : This is the most general one ( for any α, β, γ and r 0 (x ) ). IN this case,
the system admits a single time-translation symmetry
X 1 = ∂ t.

• Case 2 : In this case, r ′′
0 = 0 ⇒ r 0 (x ) = r 00 + x . r 01, and one has two

symmetries
X 1 = ∂ t,
X 2 = ∂x − r 01 ∂ η.

• Case 3 : for β = 0 , one also has two symmetries that are given by
X 1 = ∂ t,
X 2 = ū ∂ ū − t ∂ t.

• Case 4 : for β = 0 and r ′′ = 0, we obtain three symmetries
X 1 = ∂ t,
X 2 = ∂x − r 01 ∂ η,
X 3 = ū ∂ ū − t ∂ t.

• Case 5 : In this case, r ′ = 0 ⇒ r 0 = r 00, we have two symmetries
X 1 = ∂x,
X 2 = ∂ t.

• Case 6 : In this case, α = γ = r′ = 0, we get three-dimensional symmetries
algebra spanned by the generators
X 1 = ∂x,
X 2 = ∂ t,
X 3 = t ∂x + ∂ ū.

• Case 7 : For α = β = r′ = 0, we get four symmetries follows as
X 1 = ∂x,
X 2 = ∂ t,
X 3 = t ∂x + ∂ ū,
X 4 = ū ∂ ū − t ∂ t.

IV – Conclusions and perspectives

In this paper we derived new weakly dispersive systems derived that model inviscid
fluid flow in viscoelastic vessels. Moreover we obtained a fully nonlinear cylindrical ana-
log of Serre equations, and derived unidirectional equations of BBM and KdV type to
the Boussinesq-type system. The numerical analysis of derived models is left for future
research.
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