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Résumé

Cette étude examine la solution numérique de problèmes diphasiques en utilisant le
modèle réduit de Kapila, c’est-à-dire le modèle à quatre équations. Ce modèle a été testé
sur différents cas tests en utilisant le schéma numérique HLLC et ses extensions. Les
résultats révèlent que la plupart des stratégies de reconstruction produisent des résultats
qui sont en bon accord avec la solution de référence. Cependant, certaines divergences ont
également été trouvées. Ce travail est préliminaire pour valider les capacités du solveur
NSMB pour les écoulements diphasiques et est destiné à ouvrir la voie d’autres modèles
d’écoulement diphasique dont l’ajout au solveur est prévu.

Summary

This study examines the numerical solution of two-phase problems using the reduced
Kapila model, that is, the four-equation model. This model was tested on different test
cases using the HLLC numerical scheme and its extensions. The results reveal that most
reconstruction strategies produce results that are in good agreement with the reference
solutions. However, certain discrepancies have also been found. This work is preliminary
to validate the capabilities of the NSMB solver for two-phase flows and is intended to
pave the way for other two-phase flow models planned to be added to the solver.
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I – Introduction

For different applications dealing with two-phase flows such as nuclear safety, cavi-
tation, turbo-machinery, etc., it is necessary to develop a compressible numerical tool
to properly capture the large variety of thermodynamic properties, traveling waves, or
stiff fronts. Although there has been an increase in compressible two-phase flow research
recently, due to the hyperbolic nature of the system, the quality and complexity of the
models and numerical simulations produced may vary. The averaged two-phase fluid flow
model is the foundation of the most popular modeling methodology. Different strategies
are used within this averaged model depending on the relevant physical assumptions made
regarding the local mechanical and thermodynamical equilibrium as well as the phase slip
condition. As a result, several models and systems of equations ranging in complexity
from seven to just three equations have been developed. In this context, two-phase flow
modeling has been implemented by the parallel Navier Stokes Multi Block (NSMB) solver.
NSMB solver is a finite volume methods solver for the steady or unsteady Navier-Stokes
equations in their compressible or incompressible versions on multi-block structured grids.
In this study numerical solutions to two-phase problems will be examined utilizing the re-
duced Kapila model, a four-equation model, which consists of three conservation laws for
mixture quantities and a void ratio for the transport equation. In particular, the focus was
on HLLC (Harten-Lax-van Leer Contact) approximate Riemann solver and its extensions.
These numerical methods were compared with test cases in the literature to validate the
accuracy of the overall solver. In conclusion, implementation and validation studies on the
NSMB solver will pave the way for other two-phase modeling types that are planned to be
adapted to the solver to handle problems related to hypothetical loss-of-coolant accidents
in nuclear reactors.

II – Governing equations

The 4-equation model [1] is a reduced version of the 5-equation Kapila model [4], as-
suming that the liquid is in the saturation state. The model consists in three conservation
laws for mixture quantities and an additional equation for the void ratio. The phases
are assumed strongly coupled and moving at the same velocity. In addition, the phases
are assumed to be in thermal and mechanical equilibrium. Below can be found inviscid

two-dimensional equations expressed in variables w=(ρ,ρ
−→
V,ρE,α) :

∂ρ

∂t
+ div(ρ

−→
V) = 0 (2.1)

∂(ρ
−→
V)

∂t
+ div(ρ

−→
V ⊗

−→
V + PId) = 0 (2.2)

∂(ρE)

∂t
+ div(ρ

−→
VH) = 0 (2.3)

∂α

∂t
+
−→
V .grad(α) = Kdiv(

−→
V) (2.4)

K =
ρlc

2
l − ρvc

2
v

ρlc
2
l

1−α
+ ρvc2v

α

(2.5)
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where
−→
V = (u, v) denotes the centre of mass velocity, E = e + V 2/2 is the total energy

of mixture and H = h + V 2/2 is the enthalpy of this mixture. The term K refers to the
sound speed of pure phases ck and it reflects the impacts of volume changes in each phase.
An equation of state (EoS), which connects the pressure and temperature to the internal
energy and density, is required to complete the system. For pure phases, convex stiffened
gas EoS was used [5] :

P (ρ, e) = (γ − 1)ρ(e− q)− γP∞ (2.6)

P (ρ, T ) = ρ(γ − 1)CvT − P∞ (2.7)

T (ρ, h) =
h− q

Cp

(2.8)

where γ = Cp/Cv is the heat capacity ratio, Cp and Cv are thermal capacities, q the energy
of formation and P∞ is a constant reference pressure. The speed of sound c is given by ;

c2 = γ
P + P∞

ρ
= (γ − 1)CpT (2.9)

On the basis of the stiffened gas EOS, it is possible to derive a formula for the pres-
sure and temperature for the two-phase mixture area using the thermal and mechanical
equilibrium assumption [8]. These formulas, along with functions for the void fraction α
and the mass fraction of gas Y , are available in all possible fluid states :

P (ρ, e, α, Y ) = (γ(α)− 1)ρ(e− q(Y ))− γ(α)P∞(α) (2.10)

1

γ(α)− 1
=

α

γv − 1
+

1− α

γl − 1
(2.11)

q(Y ) = Y qv + (1− Y )ql (2.12)

P∞(α) =
γ(α)− 1

γ(α)

[
α

γv
γv − 1

P v
∞ + (1− α)

γl
γl − 1

P l
∞

]
(2.13)

T (ρ, h, Y ) =
h− q(Y )

Cp(Y )
(2.14)

Cp(Y ) = Y Cpv + (1− Y )Cpl (2.15)

Acoustic waves propagate at the Wallis speed of sound in the absence of mass transfer.
This speed is denoted by :

1

ρc2wallis

=
α

ρvc2v
+

1− α

ρlc2l
(2.16)
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The mass transfer term is activated when the local pressure P is smaller than the
vapour pressure Pvap(T ) which is calculated as :

Pvap(T ) = Pvap(Tref ) +
dP

dT
(T − Tref) (2.17)

The void ratio equation expression changes when mass transfer between phases takes
place, and becoming :

∂α

∂t
+ div(α

−→
V) = (K + α)div(

−→
V) +

(
c2v
α
+

c2l
1−α

ρlc
2
l

1−α
+ ρvc2v

α

)
ṁ (2.18)

It is possible to create a family of models in which ṁ is expressed as by assuming that
the mass transfer is proportional to the divergence of the velocity [2] :

ṁ =
ρlρv

ρl − ρv

(
1− c2

c2wallis

)
div(

−→
V) (2.19)

The enthalpy of each phase can be used to describe the speed of sound in the mixture
[3] :

ρc2 = (γ(α)− 1)

[
ρvρl

(ρl − ρv)
(hv − hl)

]
(2.20)

III – Numerical method

The four-equations model can be represented as a matrix in one-dimensional space
as :

∂w

∂t
+

∂F (w)

∂x
= S(w) (2.21)

where S (w) source term, F convective flux and w= (ρ,ρu,ρE,α) is the vector of conserved
variables. Using the finite volume technique, the computational domain can be divided
into regular meshes, if this is done for the spatial domain and the temporal domain, the
above equation can be reformulated as follows :

∆x
wn+1

i − wn
i

∆t
+ F n

i+1/2 − F n
i−1/2 = Sn

i ∆x (2.22)

where i and n stand for discretization in space and time, respectively. This numerical flux
can be calculated using a Riemann problem solution or any other numerical method. Al-
though the main problem here arises from the non-conversavite form of the conservation
equations and the existence of the source term, different approaches can be found in the
literature to solve such problems. In this study, numerical simulations are performed using
an explicit time integration and the convective flux through the cell interface is calculated
with an HLLC scheme [10]. The HLLC approach takes into account two averaged inter-
mediate states, w∗

L and w∗
R, separated by the contact wave speed SM . At a cell interface,

the numerical flow Fi+1/2 can be represented as :
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Fi+1/2 =


F (wL), if SL > 0

F (w∗
L), if SL ≤ 0 < SM

F (w∗
R), if SM ≤ 0 ≤ SR

F (wR), if SR < 0

(2.23)

The speeds of the smallest and largest waves at the cell interface are referred to as SL

and SR, respectively. F (w∗
k) , P

∗ , SM are defined as follows :

w∗
K =


ρ∗K

(ρu)∗K
(ρE)∗K
α∗
K

 (2.24)

w∗
K =

1

SK − SM


ρK(SK − uK)

(ρu)K(SK − uK) + P ∗ − PK

(ρE)K(SK − uK) + P ∗SM − PKuK

αK(SK − uK)

 (2.25)

F (w∗
K) =


ρ∗kSM

(ρu)∗KSM + P ∗

(ρE)∗KSM + P ∗SM

α∗
KSM

 (2.26)

P ∗ = PL + ρL(uL − SL)(uL − SM) = PR + ρR(uR − SR)(uR − SM) (2.27)

SM =
PR − PL + ρLuL(SL − uL)− ρRuR(SR − uR)

ρL(SL − uL)− ρR(SR − uR)
(2.28)

We also need the wave speeds SL and SR to fully determine the numerical fluxes. Al-
though there are different approaches related to this in the literature, simple wave speed
estimation is used :

SL = Min(uL − cL, uR − cR) SR = Max(uL + cL, uR + cR)

Over the past decades, a tremendous amount of research has been done to develop
high-resolution methods for hyperbolic conservation laws, as a result, there are different
methods that can be found to achieve high-order accuracy in the literature. The ear-
liest significant contribution to this direction is the MUSCL (Monotone Upstream-centred
Scheme for Conservation Laws) scheme by van Leer. Since van Leer’s work, the MUSCL
scheme has been studied by many experts and is widely used for simulations of scienti-
fic and engineering problems, and this method has also been applied in this study. The
concept is to use reconstructed states to replace the piecewise constant approximation of
Godunov’s method, which is formed from cell-averaged states from the previous time step.
In this way, slope limited, reconstructed left and right states are obtained for each cell
and utilized to calculate fluxes at cell boundaries. As known, high order schemes produce
spurious oscillations. Therefore, in this study, van Leer slope limiter is applied to avoid
the spurious oscillations.
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IV – Results

Case 1

This test case is proposed in [9]. A one-meter-long shock tube with two chambers
and chambers separated at x = 0.6 m. The initial volume fraction of spinel is 0.4046
everywhere. The pressure in the left chamber is 1010 Pa while the right chamber is at
atmospheric pressure. The fluids are initially at rest and are governed by the stiffened gas
EOS. The parameters are : γ

P∞
ρ


Epoxy

=

 2.43
5.3× 109 Pa
1185 kg/m3

 and

 γ
P∞
ρ


Spinel

=

 1.62
141× 109 Pa
3622 kg/m3

 (3.1)

Results are displayed in 80 µs, calculations are made with a mesh of 6000 cells and the
results are compared to the exact solution [7]. While void ratio and mixture density profiles
are shown in Figure 1, mixture pressure and velocity are presented in Figure 2. HLLC 2
and HLLC 3 refer to the second and third-order extensions. As can be seen, the results
are quite similar except for some deviations in HLLC third-order scheme.
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Figure 1 – Void ratio and mixture density profiles along the tube, case 1, t=80 µs.

Case 2

This test case is proposed in [8]. A one meter long shock tube where left chamber
filled with liquid dodecane at 108 Pa and with density 500 kg/m3, while right chamber
filled with vapor dodecane at atmopsheric pressure and with density 2 kg/m3. The initial
discontinuity is located at x = 0.75 m and each chamber contains a weak volume fraction
(10−8) of the other fluid. The fluids are initially at rest and are governed by the stiffened
gas EoS. The parameters are :

P∞
Cp

Cv

γ
q


Liquid

=


4× 108 Pa

2534 J kg−1 K−1

1077 J kg−1 K−1

2.35
−755× 103 J kg−1

 and


P∞
Cp

Cv

γ
q


V apor

=


0

2005 J kg−1 K−1

1956 J kg−1 K−1

1.025
−237× 103 J kg−1

 (3.2)
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Figure 2 – Mixture pressure and velocity profiles along the tube, case 1, t=80 µs.

Results are displayed in 473 µs, calculations are made with a mesh of 6000 cells and the
results are compared to the exact solution. While void ratio and mixture density profiles
are shown in Figure 3, mixture pressure and velocity are presented in Figure 4. While the
void ratio and density results were very close to the reference result, some inconsistency
was observed in the velocity results and there was a significant fluctuation in the pressure
results.
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Figure 3 – Void ratio and mixture density profiles along the tube, case 2, t=473 µs.

Case 3

This test case is proposed in [9].A one-meter-long shock tube with two chambers. The
left chamber contains high-pressure fluid (109 Pa) while the right chamber contains low-
pressure fluid (105 Pa). Chambers are separated by an interface at the location x = 0.75
m. In the left chamber, the water volume fraction is set to αwater = 1− ϵ and in the right
chamber its value is αwater = ϵ, with ϵ = 10−6. The fluids are governed by the stiffened
gas EoS ;  γ

P∞
ρ


Liq

=

 4.4
6× 108 Pa
1000 kg/m3

 and

 γ
P∞
ρ


Gas

=

 1.4
0 Pa

1 kg/m3

 (3.3)
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Figure 4 – Mixture pressure and velocity profiles along the tube, case 2, t=473 µs.

Results are displayed in 240 µs, calculations are made with a mesh of 4000 cells and the
results are compared to the exact solution of the Euler equations. While void ratio and
mixture density profiles are shown in Figure 5, mixture pressure and velocity are presented
in Figure 6. As can be seen, the results are similar except for the post-shock values of the
velocity. Also, some discrepancy is observed in the HLLC third-order scheme.
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Figure 5 – Void ratio and mixture density profiles along the tube, case 3, t=240 µs.

Case 4

This test case is proposed in [6]. A one-meter-long shock tube with two chambers. The
left chamber contains high pressure fluids (109 Pa) while the right chamber contains low
pressure fluids (105 Pa). For x < 0.7 m the liquid volume fraction is 0.8, while it is 0.2
otherwise. The fluids are initially at rest and are governed by the stiffened gas EoS, and
these characteristics are the same as in the above test case (3.3). Results are displayed at
a time of 0.2 ms, the computations were done with a mesh of 6000 cells and the results
are compared to reference 5-equation reduced model solution [6]. While void ratio and
mixture density profiles are shown in Figure 7, mixture pressure and velocity are presented
in Figure 8. In high-order schemes, deviations are observed in the post-shock values of
velocity and density compared to the reference result. Also, in high orders, the head of
the rarefaction wave location deviates from the reference result.
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Figure 6 – Mixture pressure and velocity profiles along the tube, case 3, t=240 µs.
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Figure 7 – Void ratio and mixture density profiles along the tube, case 4, t=0.2 ms.
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Figure 8 – Mixture pressure and velocity profiles along the tube, case 4, t=0.2 ms.
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Case 5

With an initial velocity discontinuity situated in the middle of the tube, a problem
involving a double rarefaction tube is taken into consideration, and proposed in [11]. A
one-meter long tube filled with liquid water at atmospheric pressure and with density
1150 kg/m3 will be used for this test. A weak volume fraction of vapor is 0.01 initially
added to the liquid. The left velocity is -2 m/s while right velocity 2 m/s, and fluid are
governed by the stiffened gas EoS ;

γ
P∞
q
ρ
Cp


Liq

=


2.35

109 Pa
−0.1167× 107 J kg−1

1150 kg/m3

4267 J kg−1 K−1

 and


γ
P∞
q
ρ
Cp


Gas

=


1.43
0 Pa

0.2030× 107 J kg−1

1 kg/m3

1487 J kg−1 K−1

 (3.4)

Result are displayed in 3.2 ms, calculations are made with a mesh of 6000 cells and
the result are compared to the two-fluid solution. While void ratio and mixture density
profiles are shown in Figure 9, mixture pressure and velocity are presented in Figure 10.
The solution involves two expansion waves. Void ratio and mixture density profiles are
inconsistent with reference results around the initial discontinuity region.
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Figure 9 – Void ratio and mixture density profiles along the tube, case 5, t=3.2 ms.
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Figure 10 – Mixture pressure and velocity profiles along the tube, case 5, t=3.2 ms
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Case 6

The final test case is obtained by adding the mass transfer term to the previous test
case. As the liquid water expands until the saturation pressure is reached, evaporation
begins to occur and a cavitation pocket is formed. Four expansion waves make up the
solution with phase transition. The evaporation fronts are represented by the additional
two expansion waves. The vapour pressure at the considered reference temperature is
Pvap = 51000 Pa. 2044 Pa/K is used as the constant dP/dT estimated using a thermody-
namic table.

Result are displayed in 3.2 ms, calculations are made with a mesh of 6000 cells and
the result are compared to the two-fluid solution. While mixture pressure and velocity are
shown in Figure 11, void ratio is presented in Figure 12. The void ratio is now close to 70%
in the cavitation pocket as opposed to the prior scenario where values were around 10%.
Although some deviations are observed in the pressure and velocity profile, the plateau
of pressure at the vapor pressure value is well illustrated.
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Figure 11 – Mixture pressure and velocity profiles along the tube, case 6, t=3.2 ms.
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Figure 12 – Void ratio profile along the tube, case 6, t=3.2 ms.
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V – Conclusion

Using the four-equation model, the numerical solution of two-phase problems is exa-
mined. This model was evaluated on several test cases using the HLLC numerical scheme
and its expansions. When compared to the reference results, it has been found that some
of the results obtained are satisfactory. However, discrepancy have been observed in some
results. These results can be improved by using Hancock predictor corrector strategy.
The ultimate goal of the studies is to simulate a hypothetical loss-of-coolant accident in
nuclear power plants. However, a more complete methodology is desired to increase the
accuracy of numerical simulations of nuclear safety accidents, and for this it is crucial
to take into account thermal and chemical non-equilibrium. For this purpose, two new
models are planned to be added to the NSMB solver, homogeneous relaxation model and
single velocity six-equation model.
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