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Résumé

La resistance ajoutée d’un navire s’avançant dans la houle est formulée par trois approches
distinguées. La formulation aux champs proches est obtenue par l’intégration de la pression du
second ordre et de la pression linéaire sur la surface intermittente ainsi que des variations des
efforts linéaires dues aux mouvements. La formulation aux champs intermédiaires est donnée par
le principe de conservation des quantités de mouvement dans un domaine limité par une surface
de contrôle entourant la carène mais à une distance finie. Enfin, la formulation aux champs
lointain est déduite en considérant une surface de contrôle se situant à l’infinie sur laquelle les
expressions asymptotiques du potentiel de perturbation sont utilisées. Ces trois formulations sont
développées afin de clarifier les controverses dans les études précédentes et de les enlever autant
que possible. Des analyses sont effectuées sur les formulations pour identifier leur avantages et
inconvénients dans les applications.

Summary

The added-resistance of ship advancing in waves is formulated in three different manners.
The classical nearfield formulation is resultant of pressure integrations on the ship hull. By
considering a fluid domain limited by a control surface surrounding the ship but at a finite
distance, the midfield formulation is obtained based on the conservation principle of momentum
in the domain. The farfield formulation is derived by putting the control surface at infinity on
which asymptotic expressions of perturbed potentials are used. These formulations are developed
in order to clarify and remove the controversy in previous studies. Some analyses are summarized
to identify their advantages and drawbacks, and missing terms.

I – Introduction

A novel method based on the linearization over the ship-shaped stream (double-body flow)
and the use of free-surface Green function with viscosity has recently been developed [2] to
compute wave loads on a ship advancing in waves and induced motions. Perfect agreement has
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been achieved between the numerical results and benchmark model tests concerning the added
mass, radiation damping, wave excitation loads and ship motions. Being critically important,
here we consider the second-order mean forces applied on the ship, in particular, the added-
resistance due to unsteady flows around the ship advancing in waves.

The definition of different reference systems used in the analysis and the representation of
rotations are presented in Section II, together with some basic notations of perturbation analysis.
The nearfield formulation has been developed by many previous studies for zero-speed case. The
analysis given in [8] and [6] is followed and extended to the forward-speed case, in Section III.
By considering a finite domain surrounding the ship by a control surface at a finite distance as
in [1], the application of the conservation principle of momentum included in the domain yields
the midfield formulation, in Section IV, to compute the second-order mean forces by only the
integral on the control surface and along its intersection with the mean free surface. The farfield
formulation can be obtained by putting the control surface to the infinity at which asymptotic
expressions of wave fields can be used. The farfield formulation by Kashiwagi given in [5] is
reported in Section V. Finally, some discussions and conclusions are given in Section VI.

II – Ship kinematic representations

We start with the definition of several reference systems used to describe ship’s motions and
fluid flows around the ship advancing in waves. The axis-angle representation of rotations by
Rodrigues is given and the waterline integral involved in the second-order load formulations is
then analysed.

II – 1 Reference systems

Considering the ship advancing along a straight path with a constant speed U , the straight-
forwarding system O(X,Y, Z) going with the same speed U , and along the same straight
path is usually defined with the origin located on the mean free surface, and by its OX-axis
oriented forward (bow), OY -axis pointing port-side and OZ-axis positive upwards. An earth-
fixed system is classically needed to describe the straight-forwarding system with absolute
coordinates. Here, we just mention it since it is not used otherwise. The straight-forwarding
reference system is an inertial system so that all physical laws valid in the earth-fixed system
stay valid in O(X,Y, Z). The ship forward speed is then represented by the uniform stream in
the negative OX-axis direction. In the vicinity of the ship, there are, in addition, the ship-shaped
stream and wavy steady flow, and unsteady flow due to wave diffraction and radiation.

We define the ship-fixed system by attaching it with the ship. Often denoted by o(x, y, z), it
is used to describe the ship geometry and inertial properties such as center of buoyancy (CoB),
center of gravity (CoG), inertial radii, etc. The ship-fixed system is, indeed, not an inertial
system, if ship motions are unsteady. It can be coincided with the straight-forwarding system in
the static or/and steady situations. In the unsteady time-harmonic motions, the vectors in the
ship-fixed reference system are at their temporal mean positions.

Finally, a so-called translation system denoted by o′(x′, y′, z′) is defined to be in translation
motions. It is in parallel with the straight-forwarding system O(X,Y, Z, t) but different by the
translations of the ship, i.e.,

(X,Y, Z) = (Xo, Yo, Zo) + (x′, y′, z′) + (ξ1, ξ2, ξ3) (1)

in which (Xo, Yo, Zo) are the coordinates of the origin o′ of the translation system and (ξ1, ξ2, ξ3)
the translations in surge, sway and heave, respectively. Since the origins o and o′ are coincided,
the difference between the ship-fixed system o(x, y, z) and the translation system o′(x′, y′, z′) is
only due to the rotations (θ1, θ2, θ3) in roll, pitch and yaw around o (or o′), respectively. Strictly
speaking, this translation system is not necessary to quantify actions (loads) and induced motions
of ship. It can be done directly in the straight-forwarding system by using the geometrical
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Figure 1 – Reference systems and ship motions

description in the ship-fixed system. On the other side, the translation system can be very
useful in the development of different formulations, as did in [8] and in [6].

Above reference systems are illustrated on Figure 1 with help of a paper boat. On the left,
the straight-forwarding system and ship-fixed system which coincides the translation system,
are in parallel when the ship is advancing steadily in calm water. Under the oscillatory action
of waves, the ship oscillates around its mean position. The translations change the position of
ship-fixed system which coincides with the translation system. On the right, the ship rotation
around the origin changes the ship-fixed system with respect to the translation system.

II – 2 Rotation representation

The angle-axis representation is adopted here to represent ship rotation motions. As explai-
ned in [6], the rotation angles around three axes (roll, pitch and yaw) of unit vectors (e1, e3, e3)
denoted by the vector θ = θ1e1 + θ2e3 + θ3e3 = (θ1, θ2, θ3) can be realised once by the angle θ
around the unit vector n̂ which are given by

θ = |θ| =
√
θ2

1 + θ2
2 + θ2

3 and n̂ = θ/θ (2)

Any vector r = (x, y, z) with its three components in the translation system equal to

r = n̂(n̂ · r) + (n̂ ∧ r) ∧ n̂ (3)

becomes
r′ = (x′, y′, z′) = n̂(n̂ · r) + cos θ(n̂ ∧ r) ∧ n̂+ sin θ(n̂ ∧ r) (4)

after the rotation θ around the axis n̂, as illustrated on the left of Figure 2. By using the identity
(n̂ ∧ r) ∧ n̂ = r − n̂(n̂ · r) and introducing (2) in (4), we have

r′ = T r with the transfer matrix T = I+
sin θ

θ
T1 +

1− cos θ

θ2/2
T2 (5)

in which I is the unit matrix, T1 is a skew-symmetric matrix given by

T1 =

 0,

θ3,

−θ2,

−θ3,

0,

θ1,

θ2

−θ1

0

 with application T1(θ)r = θ ∧ r (6)

and the symmetric matrix T2 given by

T2 =
1

2

−θ
2
2 − θ2

3,

θ2θ1,

θ3θ1,

θ1θ2,

−θ2
3 − θ2

1,

θ3θ2,

θ1θ3

θ2θ3

−θ2
1 − θ2

2

 with application T2(θ)r =
1

2
θ ∧ (θ ∧ r) (7)
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Figure 2 – Rotation by the axis-angle representation of Rodrigues (left) and intermittent surface
δH around the waterline Γ (right)

It can be shown that

T−1 = I− sin θ

θ
T1 +

1− cos θ

θ2/2
T2 = Tt (8)

with Tt is the transpose of T. Furthermore, we have

|T| ≡ 1 ; T1T1 = 2T2 = Tt
1Tt

1 and Tt
1T1 = −2T2 = T1Tt

1 (9)

which are useful in the following.

II – 3 Integrations on the instantaneous hull

The wetted part of ship hull is varying in time due to its oscillatory motions and wave
elevations around the waterline. The instantaneous ship hull H can be considered as the sum of
the instantaneous hull under the waterline H and the intermittent surface δH around the mean
waterline Γ, defined as the difference between H and H, i.e., H = H ∪ δH. The integral of any
function f(X,Y, Z) on the instantaneous hull H can be evaluated by∫∫

H
f(X,Y, Z, t) dS =

∫∫
H
f(X,Y, Z, t) dS +

∫∫
δH
f(X,Y, Z, t) dS (10)

These integrals can be written equivalently∫∫
H
f(X,Y, Z, t) dS =

∫∫
H
f(x′, y′, z′, t) ds (11)

in the translation coordinate system. Considering the hull piercing the mean free surface straightly
with an angle α with the vertical line, i.e., α = 0 if the hull is wall-sided. Along the waterline
Γ, the wave elevation is denoted by η and its vertical displacement by v, the integral on the
intermittent surface is then∫∫

δH
f(X,Y, Z, t) dS =

∫∫
δH
f(x′, y′, z′, t) ds =

∮
Γ

dl

∫ η−v

0
f(x′, y′, z′+Z0, t) dz′/ cos(α+γ) (12)
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in which α is the inclining angle of hull at the waterline and γ is the angle due to the rotations
of the ship, as illustrated on the right of Figure 2. The angles α and γ are defined by

α = tan−1(−n3/
√

1− n2
3) and γ = −e3 · (θ ∧ n) = θ2n1 − θ1n2 (13)

in relation with the normal vector n = (n1, n2, n3) on the ship hull at the waterline. The vertical
displacement v of the waterline Γ is positive if it is over the mean free surface z′ = −Z0 (v < 0 in
Figure 2) like the wave elevation η. The integral on the intermittent surface is transformed to the
integral dl along the waterline and the vertical integral dz′ between the mean waterline z′=−Z0

and z=η− v−Z0 which is translated to z′+Z0 =0 to z′+Z0 =η− v. The factor 1/ cos(α+ γ) is
introduced to correct the inclined distance between η and v by assuming the hull inclination with
respect to the vertical line is straight in the vicinity of waterline. It is important to note that
the hull surface H in (11) and the waterline Γ in (12) are at their instantaneous position. Both
integrals are to be evaluated at their mean position so that the integrand function f(x′, y′, z′, t)
is to be expressed at the mean position by using the Taylor expansions. If the normal vector is
involved, the variations due to ship rotations are to be taken into account.

II – 4 Decompositions according to the pertubation analysis

By assuming a small parameter ε to be proportional to wave steepness, the time-harmonic
unsteady motions (ξ,θ) are expressed by the sum of

(ξ,θ) =���
��:0

(ξs,θs)︸ ︷︷ ︸
O(1)

+<e
{
ξ0(ξ1,θ1)︸ ︷︷ ︸

O(ε)

e−iωt
}

+ ξ2
0(ξ̄, θ̄)︸ ︷︷ ︸
O(ε2)

+<e
{
ξ2

0(ξ2,θ2)︸ ︷︷ ︸
O(ε2)

e−i2ωt
}

+O(ε3) (14)

in which (ξs,θs) represent the mean displacements due to the steady flow.
The position of ship (in calm water) is modified due to the steady forces induced by the

steady flow around the ship. The horizontal steady displacements (in surge/sway/yaw) should
be corrected by the propulsion action combined with rudders. The vertical mean displacements
like sinkage and trim are possible to balance the force in heave and moment in pitch/roll by
hydrostatic stiffness. In any case, we can consider the reference systems associated with the
equilibrium position of ship in steady flows so that (ξs,θs) are imposed to be zero without loss
of generality.

In unsteady flow, ξ0 denotes the incoming wave amplitude. The first term on the right hand
side of (14) denotes the linear component oscillatory at the encounter frequency ω. The second
term is the mean displacement and third is of oscillatory at the double encounter frequency.
Both the second and third terms are of second order. The terms of third order or higher are
not explicitly denoted in (14). It worth noting that there is a component of mean displacements
(sinkage and trim, for example) due to the steady flow which are not accounted here. Nor the
second-order motions (ξ2,θ2) at the double frequency since we are interested here the second-
order mean values, so that we shall write the first-motion amplitudes (ξ1,θ1) by (ξ,θ) for the
sake of simplicity 1.

The same notations as in (14) are used for any other quantities of wave fields like wave
elevations and velocity potentials, and physical quantities such as pressures and forces, etc. In
particular, the total velocity potential Φ scaled by

√
gL3 and its gradient ∇Φ scaled by

√
gL

are written by

Φ = Frφ
s + <e

{
(ξ0/L)φ e−iωt

}
+ (ξ0/L)2ψ̄ + · · ·

∇Φ = Frw + <e
{

(ξ0/L)∇φ e−iωt
}

+ (ξ0/L)2∇ψ̄ + · · ·
(15)

where Fr = U/
√
gL is the Froude number to represent the forward U scaled with the gravity

acceleration g and ship length L. The velocity potential of steady flow is denoted by φs and

1. without confusion with the second-order mean displacements (ξ̄, θ̄).
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its gradient by w = ∇φs in their non-dimensional form. The non-dimensional potential of
linear unsteady flow is denoted in φ in (15). The second-order potential ψ̄ represents the steady
component which could contribute to the second-order steady loads as shown in [4]. There should
have a component of second order oscillatory at the double frequency which is ignored here.

Finally, the product of two linear time-harmonic quantities (A,B) = <e{(a, b)e−iωt} is
usually written by

AB = <e{ae−iωt}<e{be−iωt} = AB +
1

2
<e{(ab)e−2iωt} with AB =

1

4
(ab∗ + a∗b) (16)

with (a∗, b∗) being the complex conjugate of (a, b), respectively. Again, since we are interested
here only on the mean part of the second-order mean value, the product AB is written as ab for
the sake of simplicity.

III – Nearfield formulations

The direct integration of fluid pressure on the instantaneous hull surface gives wave loading
on ships. Since the pressure obtained by applying Bernoulli’s equation involves only wave fields
in the vicinity of ship hull, the formulation is called the nearfield formulation. We write the
fluid pressure P scaled by (ρgL), the wave elevation η above the waterline and its vertical
displacement v scaled by L, the vector X of displacement at any point on the ship hull scaled
by L, and the forces F scaled by ρgL3, in the translating coordinate system as

P = P0 + <e{(ξ0/L)P1e−iωt}+ (ξ0/L)2P2 + · · ·
η = F 2

r η0 + <e{(ξ0/L)η1e−iωt}+ (ξ0/L)2η2 + · · ·
v = <e{(ξ0/L)v1e−iωt}+ (ξ0/L)2v2 + · · ·
X = <e{(ξ0/L)X1e−iωt}+ (ξ0/L)2X2 + · · ·
F = F 0 + <e{(ξ0/L)F 1e−iωt}+ (ξ0/L)2F 2 + · · ·

(17)

with the zeroth-order steady components (P0, η0,F 0), the linear component (P1, η1, v1,X1,F 1),
oscillating at the encounter frequency, and the second-order mean component (P2, η2, v2,X2,F 2).
The pressure components (P0, P1, P2) and (η0, η1, η2) evaluated at z = −Z0 are given by

P0 = −(z + Z0) + F 2
r P

s
0

P1 = iωφ− Frw · ∇φ

P2 = −1

2
∇φ · ∇φ− Frw · ∇ψ̄


η0 = P0|z=−Z0 = −1

2
(w ·w − 1)

η1 = P1|z=−Z0 = iωφ− Frw · ∇φ

η2 = P2|z=−Z0 = −1

2
∇φ · ∇φ− Frw · ∇ψ̄

(18)

respectively. The zeroth-order pressure P0 includes the pressure P s0 = −1
2(w ·w− 1) associated

with the steady flow in addition to the hydrostatic part. The displacement vectors (X1,X2)
and the vertical displacements (v1, v2) evaluated at z = −Z0 are obtained by{

X1 = ξ + T1(θ)r

X2 = ξ̄ + [T1(θ̄) + T2(θ)]r

{
v1 = ξ3 + θ1y − θ2x

v2 = ξ̄3 + θ̄1y − θ̄2x+ [θ3θ1x+ θ2θ3y + (θ2
1 + θ2

2)Z0]/2
(19)

by using the first-order components (ξ,θ) which is understood to be (ξ1,θ1) in (14), and the
second-order mean component (ξ̄, θ̄) of ship motions. The transfer matrices (T1,T2) are defined
in (6) and (7), respectively.

Now we compute the loads F by the integration of fluid pressure on the ship hull at its
instantaneous position H which is composed of the hull H below the mean waterline and the
intermittent surface δH around the waterline Γ. The integral on the instantaneous hull H is
further transformed to the integral on H0(X0) at its mean position, i.e., the mean position
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under the steady flow. In the same way, the integral on the instantaneous intermittent surface
δH is transformed in the integral on the mean intermittent surface : along the mean waterline
Γ0 and vertical line between the mean waterline and the wave crest η − v over the waterline
which is vertically displaced v according to (12) :

F = −
∫∫
H
Pnds = −

∫∫
H
Pnds−

∫∫
δH
Pnds

= −
∫∫
H0

{[
1 + (X · ∇) +

1

2
(X · ∇)2

]
P
}{[

I + T1 + T̄1 + T2

]
n
}

ds

−
∮

Γ0

dl

∫ η−v

0

{
(1 + z∂z)

[
1 + (X · ∇) +

1

2
(X · ∇)2

]
P
}{[

I + T1 + T̄1 + T2

]
n
} dz

cos(α+γ)

(20)

in which the Taylor expansions of P (H) by P (H0) on H0 and of P (Γ) by P (Γ0) along Γ0 are
used. In (20), the force components are expressed in the translation system with the reference
point at the origin o′. Since H0 and Γ0 are at their mean position (x′ = x, y′ = y) at which the
ship-fixed coordinate system can be used with a slight modification of z = z′+Z0. Furthermore,
the matrix T1 = T1(θ) is associated with the first-order rotation θ while T̄1 = T1(θ̄) is associated
with the second-order rotation θ̄ and T2 = T2(θ̄) with the product of first-order rotations. Both
T̄1 and T2 are of second order. The variations of the normal vector n (oriented positively into
the fluid) due to the rotations are taken into account as well. By identifying the components
defined in (17) and those in (20), we obtain

F 0 = −
∫∫
H0

P0nds− F 2
r

∮
Γ0

{
η0P0 + F 2

r
1

2
η2

0∂zP0

} n

cosα
dl

F 1 = −
∫∫
H0

(P1 +X1 · ∇P0)nds− T1

∫∫
H0

P0nds

−
∮

Γ0

{
(η1 − v1)P0 + F 2

r η0(P1 +X1 · ∇P0 + P0T1) + (η1 − v1)F 2
r η0∂zP0 +

1

2
F 4

r η
2
0∂zP1

+ F 2
r γ tanα

[
η0P0 + F 2

r
1

2
η2

0∂zP0

]} n

cosα
dl

(21)

for the zeroth-order and first-order forces. The second-order forces are expressed by

F 2 = −
∫∫
H0

[
P2 +X1 · ∇P1 +

1

2
(X1 · ∇)2P0 +X2 · ∇P0

]
nds

− T1

∫∫
H0

(P1 +X1 · ∇P0)nds− (T̄1 + T2)

∫∫
H0

P0nds

−
∮

Γ0

{
(η2 − v2)P0 + (η1 − v1)(P1 +X1 · ∇P0 + P0T1 + F 2

r η0∂zP1)

+ F 2
r η0

[
P2 +X1 · ∇P1 +

1

2
(X1 · ∇)2P0 +X2 · ∇P0 + F 2

r (η1 − v1)(X1 · ∇)∂zP0

]
+
[1
2

(η1 − v1)2 + F 2
r η0(η2 − v2)

]
∂zP0 + γ2(

1

2
+ tan2 α)F 2

r η0

[
P0 +

1

2
F 2

r η0∂zP0

]
+ γ tanα

[
(η1 − v1)P0 + F 2

r η0(P1 +X1 · ∇P0 + P0T1) + (η1 − v1)F 2
r η0∂zP0

]} n

cosα
dl

(22)

with γ given in (13). The terms associated with γ are derived by using the development

1

cos(α+γ)
=

1

cosα

{
1 + γ tanα+ γ2(

1

2
+ tan2 α)

}
+O(γ3) (23)

The steady pressure P0 = P h0 +P s0 defined in (18) includes the hydrostatic part P h0 = −(z+Z0)
and that P s0 = −1

2(w ·w − 1) due to the steady flow w. Introducing the composition of P0 in
(22) and using the identities

P s0 = η0 ; P1 = η1 and P2 = η2 (24)
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on the mean free surface z = −Z0, we have

F 2 = −
∫∫
H0

{
P2 +X1 · ∇P1 +

[
P1 − (X1 · e3)

]
T1

}
nds− 1

2

∮
Γ0

(η1 − v1)2 n

cosα
dl

+

∫∫
H0

[
X2 · e3 + (z + Z0)(T̄1 + T2)

]
nds

− F 2
r

∫∫
H0

[
(X1 · ∇P s0 )T1 +

1

2
(X1 · ∇)2P s0 +X2 · ∇P s0 + P s0 (T̄1 + T2)

]
nds

− F 2
r

∮
Γ0

{
(η1 − v1)X1 · ∇P s0 + η0

[
(η2 − v2) + (η1 − v1)(T1 + ∂zP1)

]
+ η0

[
X1 · ∇P1 +

1

2
F 2

r (X1 · ∇)2P s0 + F 2
r X2 · ∇P s0 + F 2

r (η1 − v1)(X1 · ∇)∂zP
s
0

]
+
[1
2

(η1 − v1)2 + F 2
r η0(η2 − v2)

]
∂zP

s
0 + γ2(

1

2
+ tan2 α)F 2

r
1

2
η2

0(F 2
r ∂zP

s
0 + 1)

+ (γ tanα)η0

[
2(η1 − v1) +X1 · ∇P s0 + T1 + (η1 − v1)(F 2

r ∂zP
s
0 − 1)

]} n

cosα
dl

(25)

in which (P1, P2) are defined in (18) including explicitly the terms associated with the forward
speed (Froude number). The first line on the right hand side of (25) is classical as it looks
like the nearfield formulation of drift forces at zero speed as presented in [10], [6] and [8]. The
second line was missing in [10] but well documented in [6] and [8] in the case of zero speed. As
shown in [6] and [8], the hull integral of all terms in the second line does not contribute to the
horizontal components of second-order forces. Other terms from the third line are associated
with the steady flow w = ∇φs on which (η0,∇P s0 ) are dependent. In summary, the horizontal
components of second-order forces can be written by

FN = F 2 = FC
N + F 2

r (FH
N + FW

N ) (26)

with the classical component

FC
N =

∫∫
H0

{
(
1

2
∇φ · ∇φ+ Frw · ∇ψ̄)−X1 · ∇(iωφ− Frw · ∇φ)

−
[
(iωφ− Frw · ∇φ)− (X1 · e3)

]
T1

}
nds− 1

2

∮
Γ0

(η1 − v1)2 n

cosα
dl

(27)

which can also be written by

FC
N =

∫∫
H0

{
(
1

2
∇φ · ∇φ+ Frw · ∇ψ̄) +X1 · ∇(−iωφ+ Frw · ∇φ)

+ (−iωφ+ Frw · ∇φ)T1

}
nds+

1

2

∮
Γ0

η1(2v1 − η1)
n

cosα
dl

(28)

for the horizontal components in [8] and used in [1] to obtain another equivalent formulation.
The equivalent nearfield formulation is written in a more compact form

FC
N =

∫∫
H0

{
(
1

2
∇φ · ∇φ+ Frw · ∇ψ̄)n+ (X1 · n)∇(−iωφ+ Frw · ∇φ)

}
ds− 1

2

∮
Γ0

η2
1

n

cosα
dl

(29)

by using the identity (eq.57) in [1]. The component FH
2 associated with the steady flow P s0 is

written by the component of integral on the hull

FH
N = −

∫∫
H0

{
(X1 · ∇P s0 )T1 +

1

2
(X1 · ∇)2P s0 +X2 · ∇P s0 + P s0 (T̄1 + T2)

}
nds (30)
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and the component FW
2 of integral along the waterline by

FW
N = −

∮
Γ0

{
(η1 − v1)X1 · ∇P s0 + η0

[
2(η2 − v2) + (η1 − v1)(T1 + ∂zP1)

]
+ η0

[
X1 · ∇P1 +

1

2
F 2

r (X1 · ∇)2P s0 + F 2
r X2 · ∇P s0 + F 2

r (η1 − v1)(X1 · ∇)∂zP
s
0

]
+
[1
2

(η1 − v1)2 + F 2
r η0(η2 − v2)

]
∂zP

s
0 + γ2(

1

2
+ tan2 α)F 2

r
1

2
η2

0(F 2
r ∂zP

s
0 + 1)

+ (γ tanα)η0

[
2(η1 − v1) +X1 · ∇P s0 + T1 + (η1 − v1)(F 2

r ∂zP
s
0 − 1)

]} n

cosα
dl

(31)

Both FH
N and FW

N are associated with the steady flow P s0 and contribute to the total mean
forces with the factor F 2

r in (26).

IV – Midfield formulations

We consider a finite domain D limited by the instantaneous ship hull H, the control surface
C and the part of free surface F in between. In this domain D, the total fluid flow is represented
by the velocity V = ∇Φ with the total velocity potential Φ and ∇Φ defined in (15). The linear
momentum M contained in the domain scaled by ρ

√
gL is written by

M =

∫∫∫
D
V dv =

∫∫∫
D
∇Φ dv (32)

and the rate of change of the linear momentum

d

dt
M =

∫∫∫
D

∂

∂t
V dv +

∫∫
H∪F∪C

V Un ds (33)

according to Reynolds transport theorem. Introducing V = ∇Φ in (33) and using the divergence
theorem to the volume integral, the rate of momentum change can be written as

d

dt
M =

∫∫∫
D
∇Φt dv +

∫∫
H∪F∪C

∇ΦUn ds =

∫∫
H∪F∪C

[
Φtn+∇ΦUn

]
ds (34)

in which we have

Φt = −P − (z + Z0)− 1

2
∇Φ · ∇Φ +

1

2
F 2

r (35)

according to Bernoulli’s equation, so that

d

dt
M =

∫∫
H∪F∪C

{[
− P − (z + Z0)− 1

2
∇Φ · ∇Φ +

1

2
F 2

r

]
n+∇ΦUn

}
ds

=

∫∫
H∪F∪C

{[
− P − (z + Z0)

]
n−∇Φ(Φn − Un)

}
ds

(36)

by using

1

2
F 2

r

∫∫
H∪F∪C

nds = 0 (37)

and

1

2

∫∫
H∪F∪C

(∇Φ · ∇Φ)nds =

∫∫
H∪F∪C

Φn∇Φ ds (38)

which is shown by (eq.65) in [1]. The velocity Un in (34) and (36) is the velocity component in
the normal direction of the boundary surfaces (ship hull H, the free surface F and the control
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surface C). The fact that P = 0 on F , Un = Φn on H ∪ F by the kinematic condition, and
Un = 0 on C which is imposed to be fixed, yields

F = −
∫∫
H
Pnds =

d

dt
M +

∫∫
H∪F∪C

(z + Z0)nds+

∫∫
C

[
Pn+∇Φ(Φn − Un)

]
ds

=
d

dt
M + Ve3 +

∫∫
C

[
Pn+ Φn∇Φ

]
ds

(39)

with V the fluid volume contained in the domain. The term Ve3 is the buoyant force balanced
by the gravity force. The horizontal components of mean forces are

< Fx, Fy >=

〈∫∫
C

[
P (n1, n2) + Φn(Φx,Φy)

]
ds

〉
(40)

since 〈
d

dt
M

〉
= 0 (41)

according to the conservation principle of the linear momentum for periodic motions. The mean
drift forces are then expressed by the integral over the instantaneous control surface C = C+δC
with C the part below the mean free surface z ≤ −Z0 and the part from the mean free surface
to the instantaneous free surface represented by the wave elevation η. The integral on the right
hand side of (40) can then be written as

< Fx, Fy >=

〈∫∫
C

[
P (n1, n2) + Φn(Φx,Φy)

]
ds

〉
+

〈∮
Γc

dl

∫ η

0

[
P (n1, n2) + Φn(Φx,Φy)

]
dz

〉
(42)

Using the decompositions (17) for P and (15) for Φ, in (42), the second-order mean forces with
the notation FM =< Fx, Fy > can be distilled and reported by

FM =

∫∫
C

[
(−1

2
∇φ · ∇φ− Frw · ∇ψ̄)(n1, n2) + φn(φx, φy) + Frψ̄n(φsx, φ

s
y)
]
ds

+
1

2

∮
Γc

η2
1(n1, n2) dl + Fr

∮
Γc

η1

[
φn(φsx, φ

s
y) + (φx, φy)(w · n)

]
dl

+ F 2
r

∮
Γc

{
η0

[
2η2(n1, n2) + φn(φx, φy) + Frψ̄n(φsx, φ

s
y)
]

+ η2(w · n)(φsx, φ
s
y)
}

dl

(43)

which could again written as

FM = FC
M + F 2

r F
W
M (44)

with the component FC
M defined by

FC
M =

∫∫
C

[
(−1

2
∇φ · ∇φ− Frw · ∇ψ̄)(n1, n2) + φn(φx, φy) + Frψ̄n(φsx, φ

s
y)
]
ds

+
1

2

∮
Γc

η2
1(n1, n2) dl + Fr

∮
Γc

η1

[
φn(φsx, φ

s
y) + (φx, φy)(w · n)

]
dl

(45)

and the component associated with the elevation η0 of steady flow

FW
M =

∮
Γc

{
η0

[
2η2(n1, n2) + φn(φx, φy) + Frψ̄n(φsx, φ

s
y)
]

+ η2(w · n)(φsx, φ
s
y)
}

dl (46)

The midfield formulation (43) is applicable to any control surface C surrounding the ship. The
control surface C can be put back to the hull H as suggested in [8] and care about the sign of
normal vector. Eventually, the control surface C can be put to the infinity.
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V – Farfield formulations

We consider a vertical cylindrical surface of radius R � 1 surrounding the ship hull H.
On this cylindrical surface, it can be shown that FW

M associated with η0 is nil. Furthermore,
the second-order potential ψ̄ is assumed to be zero 2 as in [5] and [7]. By using φs = −x and
w · n = −n1 = cos γ with γ the polar angle. The farfield formulation can be derived from (45)
and written by

< Fx, Fy > =
1

4

∫ 0

−∞
dz

∫ π

−π
R
[
(∇φ · ∇φ∗)(n1, n2)− (φx, φy)φ

∗
n − (φ∗x, φ

∗
y)φn)

]
dγ

− 1

4

∫ π

−π
R(ω2φφ∗ − F 2

r φxφ
∗
x)(n1, n2) dγ

(47)

in which (ϕ∗,∇ϕ∗, ϕ∗n) are the complex conjugate of (ϕ,∇ϕ,ϕn), respectively. The first-order
potential φ = φP + φ0 is composed of the part of incoming waves φ0 and the perturbation part
φP which is expressed asymptotically. By using the stationary phase method, the first farfield
formulation for < Fx > was derived by Maruo [7]. This pioneer work has been extended in [5]
by applying Parseval’s theorem in the Fourier-transform theory, to the transverse load < Fy >
and yaw moment < Mz >. Here the farfield formulation < Fx, Fy > given in [5] is reported by

<Fx> =
4π

F 2
r

(−
∫ α1

−∞
+

∫ α3

α2

+

∫ ∞
α4

)
[
|C(α)|2 + |S(α)|2

](α− F 2
r k0 cosβ)√
k2 − α2

k dα

<Fy> =
4π

F 2
r

(−
∫ α1

−∞
+

∫ α3

α2

+

∫ ∞
α4

)
{[
|C(α)|2 + |S(α)|2

]F 2
r k0 sinβ√
k2 − α2

−=m{2C(α)S(α)}
}
k dα

(48)

with k = (τ +α)2 the wavenumber of unsteady ship waves and (k0, β) the (wavenumber,heading)
of incoming waves. The complex Kochin functions C(α) and S(α) are defined in [5] by

C(α) =
1

4π

∫∫
H0

(φPn − φP∂n)ekz−ixα cos(y
√
k2 − α2) ds

S(α) =
1

4π

∫∫
H0

(φPn − φP∂n)ekz−ixα sin(y
√
k2 − α2) ds

(49)

and the values of (α1, α2, α3, α4) by

α1 = −(1 + 2τ +
√

1 + 4τ)/2 α2 = −(1 + 2τ −
√

1 + 4τ)/2

α3 = +(1− 2τ −
√

1− 4τ)/2 α4 = +(1− 2τ +
√

1− 4τ)/2
(50)

in which α3 = α4 for τ > 1/4 and the last two line integrals in (48) are merged together.

VI – Discussion and conclusions

Three formulations for second-order drift forces <Fx, Fy> have been presented in the present
study. The extension to including the drift moment <Mz> can be achieved following the same
procedure. The nearfield formulation based on pressure integrations has been considered as the
direct method. However, there are several missing terms in previous studies associated with the
integral on the intermittant surface, i.e. the Taylor expansions, in particular, associated with the
vertical coordinate, and the inclined angle of hull at the waterline due to rotations. Furthermore,
the inclusion of steady wave elevation η0 and the second-order steady flow ψ̄ as in [4], makes the
nearfield formulation more general. Numerical application of the nearfield formulation contain
some difficulties associated with the higher derivatives of linear potentials and the evaluation of
second-order steady potential.

2. this might not be true in general case.
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The midfiled formulation is derived based on the principle of momentum conservation for
any time-harmonic flow in an enclosed domain with a control surface, with the inclusion of
second-order steady flow ψ̄. Unlike the nearfield formulation, the wave fields and their higher
derivatives can be computed numerically in an accurate way on the control surface at some
distance from the ship hull. In principle, the midfield formulation is equivalent to the nearfield
formulation although the formal demonstration of their equivalence by using Gauss’ and Stokes
theorems like zero-speed case shown in [1] is missing.

Putting the control surface at the infinity and using the asymptotic expressions of linear
potentials, the farfield formulation can be obtained by the integrals written on the control
surface. The pioneer work by Maruo [7] and that by Kashiwagi [5] are just reported here. The
farfield formulation (48) is much simpler comparing with the nearfield formulation (26) and the
midfield formulation (43). In addition to some simplifications embedded in (47) and in (49) for
the Kochin functions, there are some numerical issues raised recently in [9], associated with the
infinite integrals in (48). Unlike the case at zero speed where only one wave system (circular ring
waves) is present in the far field, there are several wave systems with forward speed including
ring waves (upstream and downstream for τ < 1/4) and two downstream V-waves each of which
has divergent waves and transverse waves, as shown in [3]. The self-interaction of each wave
system is well represented in the farfield formulation (48) while the interaction between different
wave systems seems missing.

Implementation of above three formulations in our in-house code HydroStar-V is on-going. The
comparison of results obtained from different formulations will be presented in the conference.
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