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Summary

Second-order wave loads on a floating structure may excite resonance phenomena, such
as slow-drift or springing, at the natural frequencies of the floating structure. Therefore,
taking into account the response of a floating offshore wind turbine (FOWT) platform un-
der non-linear wave loads is of paramount importance for its design. This paper presents
computation results of the quadratic transfer functions (QTFs) for sum- and difference-
frequencies wave loads on FOWT platforms using open-source potential flow, boundary
element solver NEMOH. The QTFs are composed of quadratic terms and second-order
potential terms. The quadratic terms are computed based on the near-field formulation,
while the computation of potential terms is based on the indirect method that uses the
Green-formulation and an assisting function, which is the normalized radiation poten-
tial. In this paper, we show the NEMOH QTFs computation on two FOWT platforms,
the OC4-DeepCwind submersible platform and the SOFTWIND spar-type platform. The
results are compared with the reference commercial software HYDROSTAR. Excellent
agreement between the two QTFs results is achieved. The focus is put on bi-directional
difference-frequency of surge, heave, and pitch QTFs and on sum-frequency full QTFs.
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I – Introduction

NEMOH 1is the first open-source potential flow boundary element solver that is deve-
loped at Ecole Centrale de Nantes [1]. The software is widely used for ocean engineering
applications and particularly in wave-energy community [8, 12, 13]. Nowadays, offshore
wind energy has huge potential to be a key element in the energy transition to come. In
this aspect, potential flow codes, such as NEMOH, could an role in the hydrodynamic
design of floating offshore wind turbines.

In the design of a FOWT, nonlinear wave-structure interactions have to be taken into
account to prevent uncontrolled motions of the floating structure due to large excitation
loads at the resonance frequencies of the structure with the presence of mooring (i.e
low-frequency loads). In this aspect, the EU-funded project FLOATECH 2contributes the
development of the open-source QBlade-Ocean software. In QBlade-Ocean, the coupling of
three open-source softwares are developed. QBlade software [14], dedicated to the design
of FOWT that is developed at TU-Berlin, requires hydrodynamics wave-input. NEMOH
contributes as an external source for the first- and second-order hydrodyamics input and
HOS-Ocean [6] for the nonlinear wave input.

This paper reports development and verification of the second-order module in NE-
MOH particularly for bi-directional quadratic transfer functions (QTFs). The first deve-
lopment of the module has been reported in [9]. Extensive verification of recent develop-
ment of the QTF module for uni-directional QTFs has been reported in [10].

The second-order wave loads are composed of the quadratic part and the potential
part. The quadratic part are based on the near-field method as described in [3]. The
potential part is based on the indirect method [3, 7] that uses the Green-formulation and
an assisting function, that is the normalized radiation potential. Then, the potential part
requires an integration of the second-order body forcing terms over the body hull and
integration of the second-order free-surface forcing terms over semi-infinite radius.

The organisation of the paper is as follows. Section II describes the notation used in
this paper. Section III and IV describe the second-order wave loads formulations used
and implemented in NEMOH. In Section V, NEMOH full QTF implementation is verified
through the comparison to HYDROSTAR commercial software [2]. Two floating offshore
wind turbine platforms are tested : the spar-buoy type SOFTWIND platform [5] and the
OC4-semisubmersible platform [11]. Conclusion is given in Section VI.

II – Notation

We start with notation and definition that are used in this paper. The floating body
is defined with 6 degrees of freedom determined at center of gravity (CoG), ξξξ = (XXX,θθθ)
where the positions,XXX = (X, Y, Z) and the orientations, θθθ = (θ1, θ2, θ3). The displacement
of points at the hull are specified by a body of vector rrr with respect to the CoG as
XXX = XXX+R(rrr) and R is a rotation operator, R(rrr) = θθθ×rrr. The six-dimensional generalized
normal vector is defined as ννν = (nnn,rrr×nnn)T with the unit normal vector, nnn, towards the fluid
domain and the normal vectors at the mean body positions as ννν0 and nnn0 = (n01 , n02 , n03).
The fluid-potential is denoted Φ(xxx, t), in the cartesian coordinate ~x = (x, y), xxx = (~x, z)
for time t, the fluid velocity, ∇Φ, and the time derivative of the potential, ∂tΦ.

1. https://lheea.ec-nantes.fr/valorisation/logiciels-et-brevets/nemoh-presentation

2. https://www.floatech-project.com/
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III – Second-Order Hydrodynamics Forces

This section describes formulation of the second-order hydrodynamic force in NEMOH
for bi-directional bi-chromatic waves.

In the potential flow problem of wave-structure interaction, fluid is assumed to be
inviscid and the flow is irrotational. Fluid is also considered incompressible so that the
fluid-potential in the interior domain is described by Laplace equation. Following boun-
dary conditions have to be considered ; the free-surface conditions, the diffraction and
radiation conditions on the body hull, the impermeable bottom condition and the radia-
tion wave condition at the far field.

The potential flow problem can be truncated for the first-order and the second-order
problems by applying a perturbation series, as shown in [3, 10]. In NEMOH, the first-
order diffraction and radiation problems are solved using the three-dimensional boundary
element method with the source distribution formulation. The second-order diffraction
problem is not solved directly but an extended module in NEMOH allows computation
of the second-order force based on the first-order diffraction and radiation solutions.

The formulation starts with the perturbation series up to and including second-order
terms, (ε2), of the body displacement, XXX , the fluid-potential, Φ, the hydrodynamic pres-
sure, PH , and then the hydrodynamic force, FFFH .

The first-order hydrodynamic pressure, P
(1)
H , and the second-order hydrodynamic pres-

sure, P
(2)
H , are then expressed as, with ρ is the fluid density,

P
(1)
H = −ρ∂tΦ(1), P

(2)
H = −ρ

[
∂tΦ

(2) +
1

2
|∇Φ(1)|2 +XXX (1) · ∂t∇Φ(1)

]
. (1)

where the total potential is the sum of the incident potential and the perturbed potential,
Φ(1,2) = Φ

(1,2)
I + Φ

(1,2)
P in which the perturbed potential is sum of the diffraction and

radiation potentials Φ
(1,2)
P = Φ

(1,2)
D + Φ

(1,2)
R , where the radiation potential is dot product

of the body velocity and the normalized radiation potential Φ
(1,2)
R = ∂tξξξ

(1,2) ·ψψψ.
The hydrodynamic force is obtained by integrating the hydrodynamic pressure, Eq.

(1), over the body hull, SB that is composed of the integration over the mean wetted body
surface, SB0 , and of the integration over the perturbed body surface, εS. The potential
over the body hull is expressed in the potential at the mean body hull position by using
Taylor expansion. The hydrodynamic force is then expressed as

FFFH = −
∫∫

SB0
∪εS

PHνννdS = FFF
(1)
H +FFF

(2)
H ,

FFF
(1)
H = −

∫∫
SB0

P
(1)
H ννν0dS, FFF

(2)
H = R(1)

(
FFF

(1)
H

)
−
∫∫

SB0

P
(2)
H ννν0dS −

∫∫
εS

P
(1)
H ννν0dS. (2)

The second-order hydrodynamic force is composed with sum of the quadratic terms of the
first order quantities, FFF

(2)
H1

, and the second-order potential terms, FFF
(2)
H2

, FFF
(2)
H = FFF

(2)
H1

+FFF
(2)
H2

.
Similarly, the second-order excitation force is composed of the quadratic terms and

the potential terms. The quadratic terms of the excitation force are then obtain by adding
the quadratic terms of the hydrodynamic forces, Eq. (2), with the quadratic terms of the
hydrostatic forces. That leads to a term with the rotation operator applied to the inertia
force, FFF

(1)
I and a term with the integral over mean waterline Γ0 of the quadratic difference

between the free-surface elevation, η(1) = −∂tΦ(1)

g
, and the instantaneous waterline, ζ

(1)
wl =
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X (1)
3wl

. The force is explicitly expressed as, with g is a gravity constant,

FFF (2)
exc1

=R(1)
(
FFF

(1)
I

)
− ρg

2

∫
Γ0

[
η(1) − ζ(1)

wl

]2

ννν0 dΓ (3)

+

∫∫
SB0

ρ

[
1

2
|∇Φ(1)|2 +XXX (1) · ∂t∇Φ(1)

]
ννν0dS.

As in the first-order fluid potential, the second-order fluid potential is composed by the
second-order incoming potential, the second-order diffraction potential and the second-
order radiation potential. Separating the radiation force due to the second-order body
motion, then the potential term of the second-order excitation term, FFF

(2)
exc2 , is obtained

by summing the second-order Froude-Krylov force, FFF
(2)
HI

, and the second-order diffraction

force, FFF
(2)
HD

,

FFF (2)
exc2

= FFF
(2)
HI

+FFF
(2)
HD

(4)

The second-order potential is assumed to be an harmonic function, which frequency is
the sum- or difference-frequencies modes, ω± = ω1 ± ω2. As the result, the second-order
Froude-Krylov force and the diffraction force are also harmonic functions, and given as

FFF
(2)±
HI

=− iω±ρ
∫∫

SB0

Φ
(2)±
I ννν0dS, (5)

FFF
(2)±
HD

=− iω±ρ
∫∫

SB0

Φ
(2)±
D ννν0dS. (6)

Following [3, 7], the second-order diffraction force is obtained with the indirect method
using the Green formulation with an assisting function, the normalized radiation potential,
ψψψ. Then the force, Eq. (6), is composed by the integration over the body hull of the normal

derivative of the second-order incident potential and the body forcing term, Q
(2)±
B , and

the integral over the free-surface of the diffraction free-surface forcing term, Q
(2)±
FD , leads

to

FFF
(2)±
HD

= iω±ρ

[∫∫
SB0

(
∂nnnΦ

(2)±
I −Q(2)±

B

)
ψψψ±dS +

1

g

∫∫
SF

Q
(2)±
FD ψψψ±dS

]
(7)

The body forcing term and the free-surface forcing term are defined in the second-order
potential flow problem, as in [10], and will be given explicitly in the next section.

IV – Sum- and Difference- frequencies Excitation Forces

This section describes explicitly the expression of the sum- and difference-frequencies
of the excitation forces composed by the Froude-Krylov force, the quadratic part and the
potential part of the force.

IV – 1 Froude-Krylov force

Bi-chromatic, bi-directional wave propagation above constant bottom, D, with two
radial frequencies ωj, with j = 1 and 2, wave number vectors ~kj = (kj cos βj, kj sin βj),
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βj is the angle from the positive x-axis and the wave number k is related with ω in the
dispersion relation, ω = Ω(k,D) =

√
gk tanh kD, described by the Airy potential as

ΦI(xxx, t) =Re
{

ΦI1(xxx)e−iω1t + ΦI2(xxx)e−iω2t
}

(8)

ΦIj(xxx) =− iajg
ω
Z(kj, D, z)ei

~kj ·~x

where the Airy profile Z(k,D, z) = cosh(k(D+z))
cosh kD

.
The difference- and sum- frequencies incident potentials are then obtained by applying

the product identity of two bi-chromatic functions involving the Airy potential, Eq. (8),
in the evaluation of the free surface forcing terms [10]. The incident potentials are then

expressed, with ω± = ω1 ± ω2, ~κ± = ~k1 ± ~k2, |~κ±| =
√
k2

1 + k2
2 ± 2k1k2 cos (β1 − β2),

νj =
Ω2(kj ,D)

g
and the complex conjugate operator applied to a complex variable, i.e. γ as

γC− = γ∗ and γC+ = γ, as

Φ
(2)±
I (xxx, t) = Re

{
Φ

(2)±
I1

(xxx)e−iω
±t
}

(9)

Φ
(2)±
I1

(xxx) =
ia1a

C±
2 g2ei~κ

±·~xZ(|~κ±|, D, z)

−(ω±)2 + Ω2(|~κ±|, D)

[
ω±

ω1ω2

(
~k1 · ~k2 ∓ ν1ν2

)
+

1

2

[
k2

1 − ν2
1

ω1

± k2
2 − ν2

2

ω2

]]
.

The sum- and difference-frequencies Froude Krylov force, Eq. (5), can be computed di-
rectly with the incoming potential given in Eq. (9).

IV – 2 Quadratic part

The quadratic part of the sum- and difference-frequencies excitation forces, with the
quadratic transfer functions (QTFs), TTT FQ

(β1, β2, ω1, ω2) , is given as follows

FFF (2)
exc1

=Re
{
TTT−FQ

a1a
∗
2e
−i(ω1−ω2)t

}
+Re

{
TTT+
FQ
a1a2e

−i(ω1+ω2)t
}
,

TTT±FQ
=
[
FFF±11 +FFF±12 +FFF±13 +FFF±14

]
/a1a

C±
2 (10)

where FFF±11, FFF±12, FFF±13 and FFF±14 are obtained from Eq. (3) by applying products of the
bichromatic functions, as follows

FFF±11 =− ρg

2

∫
Γ0

[
η

(1)
1 − ζ

(1)
wl1

] [
η

(1)
2 − ζ

(1)
wl2

]C±
ννν0 dΓ (11)

FFF±12 =
ρ

2

∫∫
SB0

[
∇Φ

(1)
1 · ∇Φ

(1)C±
2

]
ννν0dS

FFF±13 =
ρ

2

∫∫
SB0

[
XXX (1)

1 ·
(
−iω2∇Φ

(1)
2

)C±
−XXX (1)C±

2 · iω1∇Φ
(1)
1

]
ννν0dS

FFF±14 =
1

2

[
R

(1)
1

(
FFF

(1)C±
I2

)
+R

(1)C±
2

(
FFF

(1)
I1

)]
.

IV – 3 Potential part

The potential part of the difference- and sum-frequencies excitation forces, with the
6−DOF quadratic transfer function (QTF), TTT FP

(β1, β2, ω1, ω2) , is given as follow

FFF (2)
exc2

=Re
{
TTT−FP

a1a2e
−i(ω1−ω2)t

}
+Re

{
TTT+
FP
a1a2e

−i(ω1+ω2)t
}
,

TTT±FP
=
[
FFF±HI1

+FFF±HDB1
+FFF±HDF1

+FFF±HDF2

]
/a1a

C±
2 , (12)
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whereFFF±HI1
is the Froude-Krylov force is computed as in Eq. (5) with the incident potential

in Eq. (9). The diffraction force, Eq. (7), is composed of several terms : the body forcing
term, FFF±HDB1

, the free surface forcing term in the finite domain, FFF±HDF1
, and the asymptotic

free surface forcing term in the infinite domain, FFF±HDF2
.

The diffraction force due to the body forcing terms is composed by i) the terms invol-
ving only the first derivatives, FFF±HDB11

, and ii) the second derivatives, FFF±HDB12
. The terms

with second derivatives are expressed as a function of first derivatives using the Green
formulation. The force is then expressed as

FFF±HDB1
=FFF±HDB11

+FFF±HDB12
(13)

FFF±HDB11
=iω±ρ

∫∫
SB0

∂nnnΦ
(2)±
I − 1

2

 (ẊXX (1)

1 −∇Φ
(1)
1

)
·R(1)C±

2 (nnn0)

+
(
ẊXX (1)C±

2 −∇Φ
(1)C±
2

)
·R(1)

1 (nnn0)


SB0

 ψψψ±dS

FFF
(2)±
HDB12

=
iω±ρ

2

∫∫
SB0

 (∇Φ
(1)C±
2 · ∇

)(
ψψψ±XXX (1)

1

)
+
(
∇Φ

(1)
1 · ∇

)(
ψψψ±XXX (1)C±

2

)
−
(
∇ ·
(
ψψψ±XXX (1)

1

))
∇Φ

(1)C±
2 −

(
∇ ·
(
ψψψ±XXX (1)C±

2

))
∇Φ

(1)
1

 · nnn0 dS

− iω±ρ

2

∫
Γ0

[ (
ψψψ±XXX (1)

1

)
×∇Φ

(1)C±
2 +

(
ψψψ±XXX (1)C±

2

)
×∇Φ

(1)
1

]
· dΓΓΓ.

where the segmented water-line, dΓΓΓ = (n02 ,−n01 , 0)dΓ.

The diffraction force due to the free-surface forcing over the finite domain SF1 ,FFF
(2)±
HDF1

, is

calculated with the evaluated integrands on a user-input free-surface mesh with a circular
boundary at radius r = Re. The force is also composed by the terms in first derivatives,
FFF±HDF11

, and second derivatives, FFF±HDF11
. The second derivative terms are expressed with

∂2
zΦI = k2ΦI and ∂2

zΦP ≈ k2ΦP . The force is then expressed as

FFF±HDF1
= FFF±HDF11

+FFF±HDF12
, (14)

FFF±HDF11
=
iω±ρ

g

∫∫
SF1


i (ω1 ± ω2)

[
∇Φ

(1)
1 · ∇Φ

(1)C±
P2

+∇Φ
(1)
P1
· ∇Φ

(1)C±
I2

]
− iω1

2g

[
Φ

(1)
1 (−ω2

2∂zΦ
(1)C±
P2

) + Φ
(1)
P1

(−ω2
2∂zΦ

(1)C±
I2

)
]

∓ iω2

2g

[
Φ

(1)C±
2 (−ω2

1∂zΦ
(1)
P1

) + Φ
(1)C±
P2

(−ω2
1∂zΦ

(1)
I1

)
]

z=0

ψψψ±dS

FFF
(2)±
HDF12

=
iω±ρ

2g

∫∫
SF1

 −(iω1Φ
(1)
1

)
k2

2Φ
(1)C±
P2

−
(
iω1Φ

(1)
P1

)
k2

2Φ
(1)C±
I2

∓
(
iω2Φ

(1)C±
2

)
k2

1Φ
(1)
P1
∓
(
iω2Φ

(1)C±
P2

)
k2

1Φ
(1)
I1

ψψψ±dS.
The diffraction force due to the free-surface forcing over the infinite domain SF2 , r ∈

[Re,∞], FFF±HDF2
, is solved semi-analytically. The perturbed and incident potentials are

expressed in asymptotic form on a cylindrical coordinate system (r, ϑ, z). The incident
potential at z = 0 is expressed as

ΦIj(r, ν) =
−iajg
ωj

∞∑
l=0

εli
lJl(kjr) cos l (ϑ− βj) (15)

where j = 1, 2 related with the wavenumber kj, wave frequency ωj and wave direction βj,
ϑ = tan−1 (y/x), Jl is the first-kind Bessel function order-l and ε0 = 1, εl = 2 for l ≥ 1.

The perturbed and radiation potentials are in asymptotic form and expressed in the
Kochin function, H(ϑ, σ, k,D). The Kochin function corresponds with source distribution
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functions, the six degree of freedom radiation source distribution, σσσR, the perturbed source
distribution, σP (ω, β)=σD(ω, β)− iωξξξ(ω) ·σσσR(ω) , that are obtained from the solution of
the first order boundary element solver. The Kochin function is defined as

H(ϑ, σ, k,D) =
∞∑
l=0

CH(σ, k,D, l) cos lϑ+ SH(σ, k,D, l) sin lϑ (16)

CH(σ, k,D, l) =
−1

4π

∫∫
SB0

σ (xxx′,Ω(k,D))Z(k,D, z′) εl (−i)lJl(kr′) cos lα′dS

SH(σ, k,D, l) =
−1

4π

∫∫
SB0

σ (xxx′,Ω(k,D))Z(k,D, z′) εl (−i)lJl(kr′) sin lα′dS

where r′ =
√
x′2 + y′2 , α′ = tan−1 (y′/x′) on the body panels. Then the radiation and

perturbed potentials are expressed, with the Kochin function given in Eq. (16), as

ψψψ±R =

√
8πk±√
r
F(k±, D, z)ei(k

±r+π/4)H
(
ϑ,σσσR

(
xxx′,Ω(k±, D)

)
, k±, D

)
(17)

ΦPj
=

√
8πkj√
r

Z(kj, D, z)ei(kjr+π/4)

kjD(1− tanh2 kjD) + tanh kjD
H (ϑ, σP (xxx′,Ω(kj, D), βj) , kj, D)

where the vertical profile F(k,D, z) = Z(k,D,z)

kD(1−tanh2 kD)+tanh kD
. Note that k± = Ω−1(ω±, D)

is obtained from the dispersion relation.
The diffraction force due to the free-surface forcing over the infinite domain is given

as

FFF±HDF2
=
iω±ρ

g

(
K±1 (k1, k2, ω1, ω2)

[
III±DF11

+ III±DF12

]
+K±2 (k1, k2, ω1, ω2)

[
III±DF21

+ III±DF22

])
(18)

where

K±1 (k1, k2, ω1, ω2) = ∓iω±k1k2

K±2 (k1, k2, ω1, ω2) = iω±
Ω2(k1, D)

g

Ω2(k2, D)

g
∓ iω1ω2

2

(
k2

1

ω1 cosh2(k1D)
± k2

2

ω2 cosh2(k2D)

)
III±DF11

=

∫ 2π

0

∫ ∞
Re

cos(ϑ− β1)Φ
(1)
I1

Φ
(1)C±
P2

ψψψ±rdrdϑ

III±DF12
=

∫ 2π

0

∫ ∞
Re

cos(ϑ− β2)Φ
(1)
P1

Φ
(1)C±
I2

ψψψ±rdrdϑ

III±DF21
=

∫ 2π

0

∫ ∞
Re

Φ
(1)
I1

Φ
(1)C±
P2

ψψψ±rdrdϑ, III±DF22
=

∫ 2π

0

∫ ∞
Re

Φ
(1)
P1

Φ
(1)C±
I2

ψψψ±rdrdϑ.

with the potentials defined in Eqs. (15,17). The integral over ϑ can be obtained analyti-
cally. The integral over r ∈ [Re,∞] is computed analytically for r ∈ [0,∞] subtracted by
the numerical integration for r ∈ [0, Re].

V – Results

In this section, we show computation results of the QTFs for two classical shapes
FOWT concepts platforms ; the spar-buoy type platform, SOFTWIND [5] and OC4-
semisubmersible platform [11].
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Dimension of the platforms are given as follows. The SOFTWIND platform has draft
91.4 m, radius 5.6 m on upper part and 9 m on bottom part. The center of gravity located
at (0,0,-71.56) m. The OC4 platform is configured with a main column, radius 3.25 m,
draft 20 m, the three columns with heave-plates, the upper columns with radius 6 m, draft
20 m, the base columns with radius 12 m, draft 6 m. The center of gravity is considered
at (0,0,0) m.

The floating platforms are discretized in quadrilateral panels using the open-source
mesh generator, GMSH [4], as shown in Fig. 1. The SOFTWIND platform is discretized
by 1872 panels and the OC4 by 2196 panels. For the sum-frequency QTF computation, the
free-surface integral terms are computed on unstructured mesh with 8304 quadrilateral
panels over radius 50 m, see Fig. 1. The convergence study of the first order hydrodynamic
coefficients are conducted and compared for different number of meshes.

For both floating platforms, the difference-frequencies QTFs (without the free-surface
integrals) of surge, heave and pitch are computed with bi-chromatic, bi-directional waves,
β1 = 0◦, β2 = 30◦, ω1 and ω2 in the interval [2π/100, π] rad/s with the radial frequency
step 2π/100 rad/s. The sum-frequency full QTFs, including the free-surface integrals, are
computed for the SOFTWIND platform with bi-chromatic waves, β1 = β2 = 0◦, ω1 and
ω2 in the interval [2π/100, 2] rad/s. In most of the application the free surface terms are
negligible in the difference-frequency QTF, but important for the sum-frequency QTF.

The computed results of NEMOH are compared with the results that are obtained
using the commercial software, HYDROSTAR. The same mesh is used in both softwares.
The lid panels are applied in NEMOH for removing irregular-frequencies with the ex-
tended boundary integral method. In HYDROSTAR, similar irregular frequency removal
method is applied with the software generated water-plane. Note that, both softwares
use difference the green-function model and difference approach for the semi-infinite free-
surface integrals.

Next subsections describe the QTFs results. All the QTFs results are nomalized by
ρg, where ρ = 1025kg/m3 and g = 9.81m/s2.

V – 1 Difference-frequency QTFs

Comparisons of the normalized magnitude of difference-frequency QTFs, |TTT−F |/ρg
where TTT−F (0◦, 30◦, ω1, ω2) = TTT−FQ

+ TTT−FP
and TTT−FP

≈
[
FFF±HI1

+FFF±HDB1

]
/a1a

C±
2 , Eqs. (10,

12), between HYDROSTAR and NEMOH are shown in the density plots Fig. 2 for the
SOFTWIND platform and in Fig. 4 for the OC4 platform. The difference of the QTF re-

sults between HYDROSTAR and NEMOH are quantified by
(
|TTT−

F |HY DROSTAR−|TTT−
F |NEMOH

ρg

)
.

Excellence agreement of the results between both softwares are achieved with quite small
difference, < 10% for all the motion modes, as shown in the plots for surge, heave and
pitch. More complex density plot is shown in Fig. 4 due to the complex interaction in the
OC4 platform.

Off-diagonal QTFs is usually the most relevant info one is looking for when computing
QTFs, especially for the mooring design. Detail comparisons of the corresponding off-
diagonal QTFs (real and imaginary parts) between both softwares are shown for the
SOFTWIND platform in Fig. 3 and for the OC4 in Fig. 5. For the surge and heave
motions, the first off-diagonal QTFs are shown, while for the pitch mode the third off-
diagonal shown. The ∆ω on the first off-diagonal QTF are at the surge natural frequencies
and the third off-diagonal QTF are at the pitch natural frequencies of the OC4 platform.
Excellence agreements between both software on the off-diagonal QTFs plot are also
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achieved. In the plots, it shown that the radiation effect due to the body displacement are
dominant in the frequency in interval ω < 0.5 rad/s, while the excitation effect dominant in
the other frequency interval ω > 0.5 rad/s. Studying the off-diagonal difference-frequency
QTFs at the natural frequencies of the structure are important for understanding low-
frequency response of the floating structure.

This verifies the bi-directional difference-frequency QTF computation within NEMOH
in the spar-buoy type, SOFTWIND, platform and a more complex structure as OC4-
submersible platform.

V – 2 Sum-frequency QTFs

Comparison of the sum-frequency full QTF, |TTT+
F |/ρg, where TTT+

F (0◦, 0◦, ω1, ω2) = TTT+
FQ

+

TTT+
FP

, Eqs. (10, 12), between both softwares are shown in the density plots, Fig. 6, and
in the off-diagonal line plots, Fig. 7. Good agreement are achieved, although in this case
the irregular frequency removal method in NEMOH was switched off due to an issue for
the computation of the potential on the free-surface mesh. Improvement in this part of
NEMOH implementation will be reported in a later publication.

This verifies the full sum-frequency QTF computation (includes the free surface inte-
gral) within NEMOH in the spar-buoy type, SOFTWIND, platform.

VI – Conclusion

NEMOH sofware has been extended with a module to compute the bi-directional
difference- and sum- frequencies quadratic transfer functions. This novel extension enables
the study of second-order wave loads on a structure in multi-directional waves.

This work take place in the FLOATECH project, with the aim of providing a design
tool for floating offshore wind turbine (FOWT). Two classical FOWT geometries, the
spar-buoy type, SOFTWIND, platform and OC4-semisubmersible platform, are tested
and the verification is done on those two geometries.

The difference-frequency, surge, heave and pitch, QTFs results, with the free-surface
integral is negligible, has been shown for the both FOWT platforms. The sum-frequency
full QTFs results, including the free-surface integrals, has been shown for the Softwind
platform. Verification of the NEMOH’s results has been performed against the commercial
code HYDROSTAR. Excellence agreements between both softwares are achieved.

NEMOH with the QTF module will be soon released publicly, which will be, to our
knowledge, the sole and only open-source software that provides the second-order module.
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Figure 2 – Density plots of the normalized bi-directional surge difference frequency QTF
magnitude (without the free-surface integrals) for the floating SOFTWIND platform ; on
the top, middle and bottom rows are for surge, heave and pitch, respectively. HYDROS-
TAR results are on the left column, NEMOH results are on the middle column and the
difference on the right column.
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Figure 3 – Comparison of the off-diagonal difference frequency QTF for the SOFT-
WIND platform between HYDROSTAR, real part (blue, solid-line), imaginary part (blue,
dashed-dot line) and NEMOH, real part (red, dashed-line), imaginary part (red, dotted-
line). On the top-left is for surge, on the top-right for heave (the first off-diagonal) and
the bottom for pitch (the third off-diagonal)
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Figure 4 – Same description as in Fig. 2 but now for the OC4 platform
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Figure 5 – Same description as in Fig. 3 but now for OC4 platform
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Figure 6 – Density plots of the normalized sum-frequency full QTF magnitude (including
the free-surface integrals) for the floating SOFTWIND platform ; on the top, middle and
bottom row are for surge, heave and pitch, respectively. HYDROSTAR results are on the
left column, NEMOH results are on the middle column and the difference in the right
column.
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Figure 7 – Comparison of the off-diagonal sum-frequency full QTF for SOFTWIND plat-
form between HYDROSTAR, real part (blue, solid-line), imaginary part (blue, dashed-dot
line) and NEMOH, real part (red, dashed-line), imaginary part (red, dotted-line). On the
top-left is for surge, on the top-right for heave (the first off-diagonal) and the bottom for
pitch (the third off-diagonal)
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