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Résumé

La méthode Level Set est une appoche permettant de capturer les mouvements d’interfaces
entre deux fluides. Dans ce travail, une approche Level Set avec réinitialisation encap-
sulée est utilisée à la manière de [29] dans un contexte volumes finis au 2ème ordre. La
discontinuité de la surface libre est traitée à l’aide de la Ghost Fluid Method [3]. Le
solveur ségrégé est implémenté dans le code open source boite à outils OpenFOAM [31]
et est testé pour plusieurs écoulements à surface libre traditionnellement rencontrés en
hydrodynamique navale.

Summary

The Level Set method is an attractive approach for capturing interface motions be-
tween two fluids. In this work, a Level Set approach with embedded reinitialization is
used in the manner of [29] for 2nd order finite volume method. The discontinuity of the
free surface is handled using the Ghost Fluid Method [3]. The segregated solver is imple-
mented in the open source CFD library OpenFOAM [31] and tested against large scale
free surface flow benchmarks typically encountered in Naval hydrodynamic.
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I – Introduction

The Level Set (LS, [26])) method is a popular technique to capture interface motions
between two phases. It is based on the function ϕ, being the signed distance to the
interface. The interface is thus represented by the iso-contour ϕ = 0. In opposition to
the Volume-Of-Fluid method ([11]), the interface position is readily accessible and the
interface curvature is more reliable due to the smooth nature of the function ϕ. The LS
is especially interesting when used with a GFM [3]. However, the mass conservation is
not guaranteed as ϕ is not a conserved quantity. As soon as the tangential component
of the normal velocity gradient is not null, the advection step will breach the distance
properties of the LS function (|∇ϕ| ̸= 1) [2]. A reinitialization procedure (hyperbolic),
[25], is often used to recover this LS function property and to reduce mass losses. In
practice, interface displacements can occur during the reinitialization procedure leading
again to mass variations. Methods have been developed to address this issue ([22], [9])),
however, their implementation for arbitrary polyhedral grids is not straightforward. Other
approaches can be used such as parabolic and elliptic reinitializations [1], [32]. But their
use for CFD has not been evaluated and enforcing the interface location is challenging. An
alternative approach is to unify both transport and reinitialization in the same equation.
The variational method by energy penalization is introduced in [16] for image rendering
to avoid the use of reinitalization [34]. A stabilized variational formulation is proposed
in [27] and compared with [16] for benchmark test cases in a context of finite element
method. Another attempt to bypass the reinitialization procedure is used in [30] for Naval
applications where the LS equation is derived from the Phase-Field equation of [24]. The
convective LS method is proposed in [29] where both reinitialization and transport are
unified. The convective LS method has been used by [6] for gas bubble dynamics. In
both [29] and [6] a sinusoidal filtering function is used to improve mass conservation in
the manner of the conservative LS approach of [19]. In this work a similar approach is
adopted but without the filtering function. Hence, the signed distance function is used
instead of the conservative one. The present method is implemented in the 2nd order
finite volume method open-source C++ code OpenFOAM [31] and tested for 4 large scale
cases encountered in Naval hydrodynamic.

II – Mathematical and numerical procedure

II – 1 The Level-Set equation

The computational domain is composed of two subdomains Ω+ and Ω− separated by
the interface Γ. Where Ω+ and Ω− represent respectively the domain of heavy and
light phases. For a given point x the Level-Set function ϕ(x) is defined by the shortest
distance d to the interface. It is signed depending on the point owner domain to improve
both numerical transport and stability near the interface by avoiding ∇ϕ discontinuities
(equation 1).

ϕ(x) =


0 x ∈ Γ

d(x) x ∈ Ω+

−d(x) x ∈ Ω−
(1)

Consequently to this definition (eq 1), ∀x, |∇ϕ| = 1. Interface normal n and curvature
κ can be computed as follow:
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n =
∇ϕ

|∇ϕ|
(2)

κ = ∇ · n (3)

The Level-Set function ϕ is advected in a flow field u (assumed incompressible) using
a transport equation:

∂ϕ

∂t
+∇ · (uϕ) = 0 (4)

The transport of the Level-Set function will breach the distance property and cause
mass variations. To limit such consequences, a reinitialization procedure is generally
adopted by solving the following Hamilton-Jacobi problem, [26]:

∂ϕ

∂τ
= S (ϕ0) (1− |∇ϕ|) (5)

Where S is the sign function, ϕ0 the initial value of the signed distance function and
τ has the dimension of a length. As indicated above solving the reinitialization equation
can significantly shift the interface. For structured grids the sub-cell fix method has been
proposed in [22] to limit such a behavior and improved later, in [10]. As in [29] we define
the penality factor λ such as :

∂ϕ

∂t
= λ

∂ϕ

∂τ
(6)

resulting in:

∂ϕ

∂t
+∇ · (uϕ) + λS (ϕ0) (|∇ϕ| − 1) = 0 (7)

By defining w = λS (ϕ0)n [25], equation 7 can be written in a conservative way
allowing finite volume implicit discretization:

∂ϕ

∂t
+∇ · (uϕ) +∇ · (ϕw)− ϕ∇ ·w = λS (ϕ0) (8)

In this equation (8), the reinitialization is embedded during the transport. S (ϕ0) is
smoothed to improve the numerical stability near the interface :

S (ϕ0) =
ϕ0√
ϕ2
0 + ϵ2

(9)

Where ϵ is chosen as 2 or 3 times a reference cell size. In this study, time derivative
is discretized with first order Euler or 2nd order backward schemes. For the LHS, the
convective terms ∇ · (ϕw) and ∇ · (uϕ) are discretized using 2nd order TVD MUSCL
scheme [28] and the last term is treated implicitly. The penalty coefficient λ which has
the dimension of a velocity is defined as :

λ = min(σ
∆x

∆t
, 1.0) (10)

With ∆x being the local mesh size for dealing with unstructured and complex meshes
and ∆t the time step. σ is usually taken as 0.5. The Level-Set function is used to compute
the phase fraction α using a filtering function:
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α =
1

2

(
tanh

(
πϕ

ϵ

)
+ 1

)
(11)

α is then used to calculate the mixture viscosity µ as:

µ = αµ+ + (1− α)µ− (12)

The sharp density field is enforced in a consistent manner with the GFM.{
ρ = ρ+ if ϕ > 0

ρ = ρ− if ϕ < 0
(13)

µ+ and µ− are the dynamic viscosity of heavy and light phases and ρ+ and ρ− their
density.

II – 2 Pressure-velocity formulation

In the context of large scale flows, surface force can be neglected. Hence, the momentum
equation in each phase can be written as follow:

∂u

∂t
+∇ · (u · u) = 1

ρ
(−∇p+

ρg +∇2(µeffu) +∇u ·∇(µeff ))

(14)

Where µeff is the effective viscosity. The momentum equations is formulated in term
of piezometric pressure pd, [21]:

p = pd + ρg · x (15)

The incompressible continuity equation is

∇ · u = 0 (16)

Assuming a piece-wise density field, equation 14 takes the following form in each phase
domain Ω+ and Ω− :

∂u

∂t
+∇ · (u · u) = 1

ρ
(∇pd+

∇2(µeffu) +∇u ·∇(µeff )), in Ω+ or Ω−
(17)

With continuous velocity and dynamic viscosity fields, equation 17 is completed by
the following set of jump conditions at the interface Γ:[

∇pd
ρ

]
Γ

= 0 (18)

[pd]Γ = [ρ]Γ g · xΓ = H (19)

Where xΓ is the interface coordinate vector. The bracket notation [.]Γ indicates a
jump value between both sides of the interface. The jump conditions are used to modify
the discretization operators at interface following the Ghost Fluid Method, [3]). The
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reader is referred to [30], [8] or [4] for the detailed modification of Laplacian and gradient
operators. The momentum equation 17 is discretized in the following manner.

aCuC +
∑
N

aNuN = bC(u) (20)

Where ac are the diagonal coefficients and aN the off diagonal ones of the momentum
equation. The source term bb includes all the explicit contributions (old time pressure gra-
dient, non-orthogonality correction...). Then following [31], the pressure Poisson equation
is obtained using the continuity equation 16 as follows:

∇ ·
(

1

ac

∇pd
ρ

)
= ∇ · uC (21)

The pressure gradient is separated into orthogonal and non-orthogonal contributions
following the over-relaxed approach [14]. The orthogonal part is treated implicitly while
the latest is calculated explicitly. After solving the pressure Poisson equation velocity
field and flux are updated.

II – 3 Solver chart

The LS with embedded reinitialization equation, the momentum and the pressure Poisson
equations are solved in a segregated manner with the PIMPLE algorithm available in
OpenFOAM. The PIMPLE algorithm is a combination of SIMPLE ([20]) and PISO ([20,
12]) algorithms. At the beginning of time step, the SIMPLE loop starts. Grid and
flux are updated knowing mesh motions and the Level Set equation is solved (8). The
pressure Poisson equation is solved iteratively within the PISO loop and finally turbulence
equations are solved. The procedure is summarized in the following algorithm 1.

1 whi l e t < tend do :
2
3 Call dynamic mesh motion
4 Update grid and flux
5 Solve Level-Set equation 8
6 Update jump conditions 18 and 19
7
8 do PIMPLE loop :
9
10 Build u equation 20
11 Optionaly solve u equation 20
12
13 do PISO :
14
15 Solve Pressure Poisson equation 21
16 Update flux and velocity
17
18 Solve turbulence equations

Listing 1: Segregated flow algorithm
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III – Test cases

III – 1 Partial Dam break failure, [5]

A three dimentional partial dam break flow has been simulated. The result are compared
with the experiment data of [5]. This test case have also been studied by [7]. It consists
in simulating the flow of a 0.6 m high, 1 m long and 2 m width water column into a
vertical 1 m width breach. The geometry is illustrated in Figure 1. The structured mesh
is composed of 5 M cells. An adjustable time step has been used with a maximum Courant
number of 0.5. Turbulence effects are calculated with the k-omega SST model, [17]. The
water elevation has been calculated and compared to the experimental data measurements
at two probe positions illustrated Figure 1. The Figure 2 represents the surface elevation
evolution and their comparison with experimental data for the two probes. The results
are in excellent agreement with experimental data. Finally, Figure 3 illustrates the free
surface contour ϕ = 0 at time 0.25, 0.5 and 0.75 s.

Figure 1: Partial Dam break geometry

Figure 2: Water elevation at at probes P0 and P5A
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Figure 3: partial dam break flow illustrations

Property Wedge Bow flare

Breadth [m] 0.5 032
Vertical distance from keel to knuckle [m] 0.29 0.203

Length of measuring section [m] 0.2 0.1
Length of each dummy section [m] 0.4 0.45

Total length [m] 1.00 1.00
Weight of drop rig (without ballast) [kg] 141 161

Ballast weight [kg] 100 100
Total weight of rig [kg] 241 261

Weight of measuring section [kg] 14.5 6.9

Table 1: Wedge and Bow flare section. Main data

III – 2 Water entry test cases, [35]

In this section the wedge and bow flare test cases from [35] are reproduced with a 2D
assumption and a symmetry plane. The main properties for both test sections are sum-
marized in table 1. The slamming force and velocity are compared with the experimental
data and numerical results of [35], [33] and [23]. The structured meshes are generated with
blockMesh, composed of 40 k cells and illustrated Figure 4. Maximal non-orthogonality
grid is 59° for wedge case and 78° for bow flare case. An adjustable time step has been
used with a maximum Courant number of 0.5. Turbulence effects are calculated with
the k-omega SST model, [17]. Spatial and temporal derivatives are discretized with 2nd
order schemes (2nd order upwind and backward). The body motion is computed using a
6 DoF module where a non deforming grid strategy is adopted. Results are presented for
slamming force and velocity on Figure 5. The overall trends are well captured although
some discrepancies are observed, especially for maximal slamming force that could be
explained by the 2D assumption. The free surface and water jets are illustrated on Figure
6 at two times : peak force and latest times.
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Figure 4: Structured blockMesh grids for wedge and bow flare cases

Figure 5: Slamming forces and velocities for wedge and bow flare cases. Top : bow flare.
Bottom : wedge
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Figure 6: Free surface evolution colored by velocity magnitude. Left : bow flare. Right :
wedge

III – 3 Periodic wave propagation, [15]

The 2D periodic domain wave propagation exercise is a numerical test case popularized
in [15]. It consists in propagating a wave in 2D domain of length 3.79 m and height
0.8 m. A stream function of height H = 0.125 m and period T = 2 s is initialized with
the package waves2Foam, [13]. The mean water level is 0.4 m above the floor. The
structured grid is composed of 379x80 cells. Following table 1 of [15], the settings used
in fvSchemes and fvSolution are the same than in the dambreak tutorial. The results
are compared with the one obtained with interFoam solver in Figure 7. The present
approach with embedded reinitialization successfully allows to maintain the wave height,
Figure 8, showing that mass conservation is well preserved for long time simulations and
that spurious air velocities do not occur thanks to the GFM. On the other side the light
phase accelerations (clearly visible on Figure 8) near the free surface explain the behavior
obtained with interFoam. As explained by [15], these light phase accelerations are caused
by the unbalances between dynamic pressure gradient and density gradient in the vicinity
of the free surface. The time step being controlled by the Courant number, light phase
accelerations cause a drastic limitation of the time step with interFoam. Its order of
magnitude is 3 ms with interFoam, whereas it is 12 ms with the present approach.
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Figure 7: Adimentionalized surface elevation η/H and wave amplitude (cm). Comparison
between present approach (green) and interFoam solver (red)

Figure 8: Wave velocity and volume fraction at two different snapshot (left: 50T and
right 100T)

III – 4 DTMB 5415 ship resistance, [18]

The DTMB 5415, [18], is a model scale ship with scale factor of 24.824. Main particulars
are detailed in Table 2. The experiment of [18] consists in simulating a towing tank test
at different Froude numbers with 2 degree of freedom (trim and sinkage). The resistance,
motions and wave pattern are measured and used as reference data for comparison with
numerical results. Simulations are carried out in the fixed ship reference frame with a
symmetry hypothesis on the y = 0 plane. The air/water flow is imposed at the entrance
of the computational box. A pressure reference is imposed on top through atmospheric
boundary conditions. For bottom and lateral patches, a slip condition is used, while, for
outlet ones, zero gradient conditions are defined. Wall functions are used for the hull
patch. The computational grid is generated with snappyHexMesh, is composed of 2.0 M
cells and is illustrated figures 9. Cells are refined close to the free surface. Refinement
boxes are defined in the near-hull region whereas coarse cells are used for the far-field
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Main particulars (Full Scale) Main particulars (model Scale)

Lpp(m) 142 5.72
Draft (m) 6.15 0.248

Displacement (m3) 8424.4 0.55
Wetted area (m²) 2972.6 4.823
LCB (%Lpp) -0.683 -0.683
VCG (m) 7.5473 0.304

Table 2: DTMB 5415. Main particulars

region. The time step is fixed at 10 ms for all Froude numbers. The pressure velocity
coupling is achieved using 3 PIMPLE and 3 PISO loops. The Figure 12 represents the trim
angles, sinkage displacements and force coefficients calculated and their comparison with
experimental data for the different Froude numbers. The calculation results are in good
agreement with experimental data. The free surface elevations (z/Lpp) are compared at a
Froude number of 0.28 (Figure 13) and for four positions: the hull and three longitudinal
cut planes. The first plane is located at y/Lpp= 0.082, the second one at y/Lpp= 0.172
and the last one at y/Lpp= 0.301. The trend is properly calculated especially for the
three first ones. The global wake pattern is also compared with the experimental data
of [18] on figure 11. The Figure 10 shows the sharp dynamic pressure field given by the
Ghost Fluid Method and the volume fraction field.

Figure 9: Unstructured mesh generated with snappyHexMesh

Figure 10: Phase fraction and dynamic pressure at x = 3.5 m
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Figure 11: Surface Elevation contours (∆z/Lpp = 0.001)
- top : experimental measurements - bot : LSFoam

Figure 12: Trim, Sinkage and force coefficient results and comparisons for different Froude
numbers
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Figure 13: Adimentionalized free surface elevation comparisons at a Froude number of
0.28

IV – Conclusions

In this study, a Level-Set/GFM solver using OpenFOAM has been presented. The present
approach uses a Level-Set equation with embedded reinitialization for overcoming the
main drawback of the standard Hamilton-Jacobi problem. The idea of [29] has been used
as a basis but without filtering function and with a suitable form for implicit FVM. The
penalty factor uses a local cell size formulation for dealing with complex non-uniform
grids. The flow solver takes advantages of the PIMPLE algorithm available in Open-
FOAM. The discretization operators are modified near the interface to take into account
the density discontinuity through the GFM. The present solver is tested against 4 test
cases with moderate free surface deformations. The overall results are in good agreement
with the experimental data. Despite the choice of a Level-Set approach, mass conserva-
tion is well preserved especially considering the uses of 2nd order discretization schemes.
The present approach seems very promising for wave propagation simulations. Future
works considering sea-keeping analysis or more complex free surface motions should be
conducted.
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